Systemtheorie Teil B

- Zeitdiskrete Signale und Systeme -

Manfred Strohrmann
Urban Brunner
Änderungsindex

<table>
<thead>
<tr>
<th>Version</th>
<th>Datum</th>
<th>Verfasser</th>
<th>Änderungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>15.03.2014</td>
<td>M. Strohmann, U. Brunner</td>
<td>Integration der Systemtheorie Online Funktionen, Korrektur von Fehlern und Überarbeitung</td>
</tr>
<tr>
<td>5</td>
<td>14.03.2013</td>
<td>M. Strohmann</td>
<td>Korrektur von Fehlern und Überarbeitung</td>
</tr>
<tr>
<td>4</td>
<td>14.03.2012</td>
<td>M. Strohmann</td>
<td>Kapitel 10: Strukturen digitaler Systeme, Korrektur von Fehlern und Überarbeitung</td>
</tr>
<tr>
<td>3</td>
<td>14.03.2011</td>
<td>M. Strohmann</td>
<td>Korrektur von Fehlern und Überarbeitung</td>
</tr>
<tr>
<td>2</td>
<td>01.10.2010</td>
<td>M. Strohmann</td>
<td>Einarbeiten von Musterlösungen und Vertiefung</td>
</tr>
<tr>
<td>1</td>
<td>01.04.2010</td>
<td>M. Strohmann</td>
<td>Erstausgabe</td>
</tr>
</tbody>
</table>

Inhalt

1 Einleitung ... 1

2 Signalabtastung und Rekonstruktion ... 9
 2.1 Quantisierungsfehler der Amplitude .. 9
 2.2 Vorüberlegungen zur zeitlichen Diskretisierung ... 11
 2.3 Ideale Abtastung und ideale Rekonstruktion .. 13
 2.4 Reale Abtastung und Rekonstruktion .. 20
 2.5 Projekt: Abtastprozess bei überlagerten Störungen .. 27
 2.6 Literatur .. 28
 2.7 Übungsaufgaben - Signalabtastung und Rekonstruktion ... 29
 2.8 Musterlösungen - Signalabtastung und Rekonstruktion .. 34

3 Zeitdiskrete Signale ... 47
 3.1 Klassen und Eigenschaften von Signalen ... 47
 3.2 Sprung- und Impulsfolgen ... 54
 3.3 Rechnen mit Folgen .. 61
 3.4 Folgen zur Beschreibung von zeitdiskreten Einschwingvorgängen 65
 3.5 Projekt: Direct Digital Synthesis ... 71
 3.6 Literatur .. 72
 3.7 Übungsaufgaben – Zeitdiskrete Signale .. 73
 3.8 Musterlösungen – Zeitdiskrete Signale ... 78

4 Zeitdiskrete Systeme im Zeitbereich ... 85
 4.1 Beschreibung zeitdiskreter Systeme mit Differenzengleichungen 85
 4.2 Grundlegende Systemeigenschaften .. 91
 4.3 Lösung linearer Differenzengleichungen mit konstanten Koeffizienten 99
 4.4 Berechnung der Systemantwort über die Faltungssumme .. 108
 4.5 Projekt: Programmierbare Switched-Capacitor-Schaltungen ... 116
 4.6 Literatur .. 117
 4.7 Übungsaufgaben – Zeitdiskrete Systeme im Zeitbereich .. 118
 4.8 Musterlösung – Zeitdiskrete Systeme im Zeitbereich ... 120

5 z-Transformation von Signalen .. 125
 5.1 Grundlagen der z-Transformation .. 125
 5.2 Rechenregeln der z-Transformation ... 134
 5.3 Rücktransformation .. 143
 5.4 z-Transformation mit MATLAB ... 151
 5.5 Literatur .. 156
 5.6 Übungsaufgaben - z-Transformation ... 157
 5.7 Musterlösungen - z-Transformation .. 159

6 Zeitdiskrete Systeme im z-Bereich .. 169
 6.1 Lösung von Differenzengleichungen mit der z-Transformation ... 169
 6.2 Übertragungsfunktion zeitdiskreter Systeme ... 174
 6.3 Interpretation der Übertragungsfunktion ... 179
 6.4 Analyse und Simulation zeitdiskreter Systeme mit MATLAB .. 199
 6.5 Literatur .. 207
 6.6 Übungsaufgaben – Zeitdiskrete Systeme im z-Bereich ... 208
 6.7 Musterlösung – Zeitdiskrete Systeme im z-Bereich .. 211
7 Spektrum von Signalfolgen

7.1 Grundlagen der Fourier-Transformation für Signalfolgen
7.2 Rechenregeln der Fourier-Transformation von Signalfolgen
7.3 Fourier-Transformation von Signalfolgen und andere Integraltransformationen
7.4 Berechnung von Korrespondenzen der Fourier-Transformation von Signalfolgen
7.5 Literatur
7.6 Übungsaufgaben - Fourier-Transformation von Signalfolgen
7.7 Musterlösungen - Fourier-Transformation von Signalfolgen

8 Frequenzgang zeidiskreter Systeme

8.1 Motivation und Herleitung
8.2 Grafische Darstellung des Frequenzgangs
8.3 Pol-Nullstellen-Diagramm und Frequenzgang eines Systems
8.4 Interpretation des Phasengangs eines Systems und linearer Phasengang
8.5 Allpässe und minimalphasige Systeme
8.6 Literatur
8.7 Übungsaufgaben – Frequenzgang zeidiskreter System
8.8 Musterlösung – Frequenzgang zeidiskreter System

9 Zeitdiskrete Realisierung zeitkontinuierlicher Systeme

9.1 Impulsinvariantent Entwurf zeidiskreter Systeme
9.2 Konvertierung der Übertragungsfunktion G(s) in die Übertragungsfunktion G(z)
9.3 Transformation des Pol-Nullstellen-Diagramms
9.4 Zeitdiskrete Approximation im Zustandsraum
9.5 Übungsaufgaben – Zeitdiskrete Approximation zeitkontinuierlicher Systeme
9.6 Musterlösungen – Zeitdiskrete Approximation zeitkontinuierlicher Systeme

10 Entwurf zeidiskreter Filter

10.1 Definition idealer Filter über den Amplitudengang
10.2 Entwurf rekursiver Filter (IIR-Filter)
10.3 Entwurf nichtrekursiver Filter (FIR-Filter)
10.4 Vergleich rekursiver und nicht rekursiver Filter
10.5 Strukturen und Blockschaltbilder digitaler Systeme
10.6 Projekt Filtervergleich
10.7 Literatur
10.8 Übungsaufgaben - Entwurf zeidiskreter Filter
10.9 Musterlösungen - Entwurf zeidiskreter Filter

11 Diskrete-Fourier-Transformation

11.1 Definition der Diskreten-Fourier-Transformation
11.2 Eigenschaften der Diskreten-Fourier-Transformation
11.3 Spektralschätzung mit Hilfe der Diskreten-Fourier-Transformation
11.4 Auflösung der Diskreten-Fourier-Transformation – Zero-Padding
11.5 Fast-Fourier-Transformation
11.6 Literatur
11.7 Übungsaufgaben - Diskrete-Fourier-Transformation
11.8 Musterlösungen - Diskrete-Fourier-Transformation
1 Einleitung

In vielen praktischen Anwendungen werden analoge Signale mit digitalen Systemen wie zum Beispiel Computern oder Mikro-Controllern erfasst und digital verarbeitet. Gründe für die digitale Realisierung von Systemen sind die kostengünstige Umsetzung, die sich aus der Verwendung von Mikro-Controllern oder hochintegrierter Schaltungen ergibt, und die Anwendung von Algorithmen, die analog wenn überhaupt nur sehr aufwendig umgesetzt werden können.

Bild 1.1: Blockdiagramm zur digitalen Signalverarbeitung

1.1 Strukturierung des Buchs

Das Buch beginnt mit der Aufgabenstellung, analoge Signale in zeitdiskrete Signale umzusetzen. Es wird sich zeigen, dass analoge Signale ohne Verfälschung diskretisiert werden können, wenn das so genannte Abtasttheorem eingehalten wird. Kritischer ist eine technisch realisierbare Rekonstruktion der Abstastwerte zu einem zeitkontinuierlichen Signal.

wichtige Systemeigenschaften direkt abgelesen werden, ohne die Systemantwort ausrechnen zu müs-
ren. Die Interpretation der Übertragungsfunktion wird beschrieben und an Beispielen angewendet.

Anschließend wird der Begriff des Spektrums einer Signalfolge erläutert, und es wird die Fourier-
einer Signalfolge ein Spektrum zugeordnet. Zeitdiskrete Systeme weisen einen Frequenzgang auf, der
ebenfalls über die Fourier-Transformation von Signalfolgen bestimmt werden kann. Durchlaufen zeit-
diskrete Signale zeitdiskrete Systeme, wird ihr Spektrum mit dem Frequenzgang des Systems multi-
pliziert.

In Produkten werden zeitkontinuierliche Systeme als Ersatz oder Ergänzung zu zeitdiskreten Systemen
gesetzt. Dabei wird sich eine zeitdiskrete Realisierung im Detail immer von einer zeitkontinuierli-
chen Realisierung unterscheiden. Es stellt sich die Frage, wie ein zeitkontinuierliches System vorteil-
haft zeitdiskret approximiert werden kann.

Für eine gezielte Änderung des Spektrums können zeitdiskrete Filter entworfen werden. Dazu werden
unterschiedliche Verfahren zum Filter-Design für Filter mit endlicher Impulsantwort (FIR-Filter) und
für Filter mit unendlicher Impulsantwort (IIR-Filter) beschrieben und an Beispielen verdeutlicht. Für
die Realisierung von Filtern Filter werden oftmals feste Strukturen verwendet, die vergleichbar zu
standardisierten Operationsverstärkerschaltungen für analoge Filter sind.

Zur Bestimmung des Spektrums eines gemessenen Signals wird die Diskrete-Fourier-Transformation
verwendet. Sie wird am Ende des Skriptes vorgestellt und angewendet. Durch eine Analyse des Si-
gnalfusses von der zeitkontinuierlichen Funktion bis zum Spektrum der Diskreten-Fourier Transfor-
mation werden Effekte wie Leakage, Zero-Padding und Fensterung erläutert.

Die Darstellungen in diesem Skript werden mit Beispielen illustriert. Beispiele beginnen mit einem
grauen Balken und enden mit einem kleinen Quadrat.

Beispiel:

Erläuterung des Beispiels

Wesentlicher Erfolgsfaktor für das Verständnis und den praktischen Umgang mit den Methoden der
Systemtheorie ist das selbstständige Rechnen von Aufgaben. Aus diesem Grund sind in das vorliegen-
de Buch Übungsaufgaben integriert, die eine Semester begleitende Vertiefung ermöglichen. Musterlö-
sungen sind online verfügbar.
1.2 Ergänzungen zum Buch

1.2.1 Systemtheorie-Online

Applikationen zur Systemtheorie

Bild 1.3: Darstellung des Verhaltens eines sogenannten PT2-Gliedes als Silverlight-Applikation
Virtuelle Versuche zur Systemtheorie

Darüber ermöglicht die Online-Plattform die Durchführung virtueller Experimente. Passend zu den Themen des Skripts werden Versuche mit dem Laborwagen auf Video aufgezeichnet und diese auf der Online-Plattform gemeinsam mit den entsprechenden Datensätzen zur Verfügung gestellt. Zusätzliche Erläuterungen zur Durchführung der Versuche und Auswertung der Daten fördern ein Grundverständnis für das wissenschaftliche Denken und Arbeiten.

1.2.2 Teamorientierte Lehrenmethoden

Parallel zu den Online-Aktivitäten wird die Vorlesung um unterschiedliche teamorientierte Lehrenmethoden ergänzt. Kooperative Lernformen fördern den Zusammenhalt und tragen sozialen Bedürfnissen Rechnung. Sie wirken der sozialen Isolation entgegen, die Studierenden fühlen sich eingebunden.
Nicht zuletzt spiegelt die Teamarbeit auch berufliche Anforderungen wider. Die Methoden des teamorientierten Lernens sind auf der Online-Plattform ausführlich dokumentiert.

Lange Nächte der Systemtheorie

Großer Preis der Systemtheorie

Tabu Systemtheorie

Zirkeltraining Systemtheorie

Die Evaluationsergebnisse zur Vorlesung zeigen, dass es durch den Einsatz teamorientierter Lehrmethoden gelungen ist, diese Abneigung gegen das Fach Systemtheorie zumindest teilweise abzubauen.
1.3 Danksagung

Wir bedanken uns bei den Studierenden und Assistenten Andreas Kühn, Erik Seiter, Philipp Fetzer, Jaruwan Limsukhakorn, Doraemon Dedkum, Georg Bauer, Jochen Lang, Alex Schwin und Michael Holz für die Gestaltung und Ausarbeitung des wesentlichen Teils der Übungsaufgaben, Applikationen und Versuche.

Unserer besonderer Dank gilt außerdem den Kollegen Prof. Dr. Beucher, Prof. Dr. Dussel, Prof. Dr. Quint und Prof. Dr. Weizenecker, die die inhaltliche und mathematische Darstellung in diesem Buch kritisch hinterfragt und damit zur besseren Verständlichkeit beigetragen haben.

In das Buch sind viele Hinweise von Studierenden der Hochschule Karlsruhe eingegangen. Wir haben versucht, den Hinweisen gerecht zu werden, die meisten Hinweise sind bereits in Überarbeitungen Korrekturen eingeflossen. Über weitere Hinweise zur mangelhaften Verständlichkeit und auf Fehler würden wir uns freuen.

Karlsruhe, 16.03.2014
2 Signalabtastung und Rekonstruktion

Als Voraussetzung für die digitale Signalverarbeitung müssen die analogen, zeit- und wertkontinuierlichen Signale so gewandelt werden, dass sie abgespeichert und weiter verarbeitet werden können. Diese Wandlung wird Digitalisierung genannt.

Dazu muss das Signal einerseits zeitlich quantisiert werden, da nur endlich viele Werte verarbeitet werden können. Zu diskreten Zeitpunkten wird dabei der aktuelle Wert des Signals erfasst oder abgetastet. Die Abstände zwischen den Zeitpunkten, zu denen die Werte erfasst werden, sind üblicherweise äquidistant, also immer gleich groß. Die erfassten Werte werden Abtastwerte genannt. Außerdem muss die Amplitude des Signals bestimmt werden, was nur in einem begrenzten Bereich und mit einer definierten Auflösung oder Quantisierung möglich ist.

Da die ideale Abtastung von Signalen nur in der Theorie existiert und in der Praxis so nicht direkt angewandt werden kann, wird darüber hinaus die reale Abtastung mathematisch beschrieben und die dadurch entstehenden Signalverzerrungen erläutert. Auch hier gibt es die Möglichkeit, die Effekte durch die geschickte Anwendung von Filtern zu kompensieren.

2.1 Quantisierungsfehler der Amplitude

$$\Delta U = \frac{5 \text{ V}}{2^{12}} = \frac{5}{4096} \text{ V} = 1.2 \text{ mV}$$

(2.1)

2.2 Vorüberlegungen zur zeitlichen Diskretisierung

Die grundlegende Frage bei der zeitlichen Abtastung von Signalen ist, in welchen Zeitabständen T_A beziehungsweise mit welcher Abtastfrequenz f_A ein Signal erfasst werden muss. Die Bedeutung dieser Frage wird an einem Beispiel erläutert.

Beispiel: Abtastwerte

Bild 2.2 zeigt Abtastwerte eines Signals, das mit unterschiedlichen Abtastzeiten T_A abgetastet wird. Die Abtastwerte sind jeweils über Geradenabschnitte miteinander verbunden. Das Signal scheint davon abzuhängen, wie es abgetastet wird.

Das zugrunde liegende Signal ist sinusförmig und wird mit der Funktion

$$u(t) = 1 \ V \cdot \sin(2 \cdot \pi \cdot 6 \cdot t)$$

beschrieben. Der Vergleich der Abtastwerte mit dem Signal $u(t)$ in Bild 2.3 zeigt, dass alle in Bild 2.2 dargestellten abgetasteten Signale falsch oder zumindest irreführend sind.

Bild 2.2: Darstellung der Abtastwerte eines Signals, das mit unterschiedlichen Abtastzeiten T_A abgetastet wird

Bild 2.3: Vergleich der Abtastwerte eines harmonischen Signals mit dem Originalsignal
Vor der allgemeinen Herleitung des Abtasttheorems werden die Abtastwerte eines harmonischen Signals $x(t)$ mit einer Frequenz f_0 analysiert. Das Signal ist definiert als

$$x(t) = \sin(2 \cdot \pi \cdot f_0 \cdot t)$$ \hspace{1cm} (2.3)

Das Signal wird mit einer Abtastzeit T_A abgetastet, sodass sich an den ganzzahligen Vielfachen k der Abtastzeit $t = k \cdot T_A$ die Werte ergeben zu

$$x[k] = x(k \cdot T_A) = \sin(2 \cdot \pi \cdot f_0 \cdot k \cdot T_A)$$ \hspace{1cm} (2.4)

Die Abtastwerte der Signalfolge stimmen mit einer Signalfolge überein, die sich aus der Abtastung eines harmonischen Signals mit einer Frequenz f_0 und dem Vielfachen der Abtastfrequenz $n \cdot f_A$ ergibt. Einsetzen der Bedingungen ergibt

$$\sin(2 \cdot \pi \cdot (f_0 + n \cdot f_A) \cdot k \cdot T_A) = \sin\left(2 \cdot \pi \left(f_0 \cdot k \cdot T_A + \frac{n}{T_A} \cdot k \cdot T_A\right)\right)$$

$$\quad = \sin(2 \cdot \pi \cdot f_0 \cdot k \cdot T_A + 2 \cdot \pi \cdot n \cdot k) = \sin(2 \cdot \pi \cdot f_0 \cdot k \cdot T_A)$$ \hspace{1cm} (2.5)

Der Faktor $n \cdot k$ ist dabei ein ganzzahliger Wert. Das bedeutet, dass die Abtastwerte, die ein Signal der Frequenz f_0 repräsentieren, genau dieselben sind wie diejenigen, die sich beim Abtasten eines Signals der Frequenz f_0 und einem Vielfachen der Abtastfrequenz $n \cdot f_A$ ergeben. Nach der Abtastung kann also nicht zwischen Signalen der Frequenz f_0 und $f_0 + n \cdot f_A$ unterschieden werden. Bild 2.4 stellt die Signaland Abtastwerte für ein Beispiel dar.

Bild 2.4: Abtastwerte für ein harmonisches Signal mit der Frequenz $f_{01} = 1$ kHz und $f_{02} = 11$ kHz

Das Signal wird mit einer Frequenz $f_\lambda = 10$ kHz abgetastet. Die Abtastwerte sind für ein Signal mit einer Frequenz $f_1 = 1$ kHz und einem Signal mit einer Frequenz $f_2 = 11$ kHz identisch.

2.3 Ideale Abtastung und ideale Rekonstruktion

Für die systemtheoretische Behandlung der digitalen Signalverarbeitung ist es erforderlich, die Abtastung und die Rekonstruktion des Signals mathematisch ideal zu beschreiben. Aus dieser Beschreibung wird anschließend das Abtasttheorem hergeleitet.

2.3.1 Mathematische Beschreibung der idealen Abtastung

Um die Abtastung eines Signals mathematisch beschreiben zu können, wird eine sogenannte Abtastfunktion \(a(t) \) definiert. Da bei der idealen Abtastung Werte des analogen Signals zu diskreten Zeitpunkten erfasst werden, bietet sich eine Folge von Impulsen als Abtastfunktion an. Diese Abtastfunktion \(a(t) \) ist mathematisch definiert als

\[
a(t) = \sum_{k=-\infty}^{\infty} \delta(t-k \cdot T_A)
\]

(2.6)

Die Abtastfunktion wird mit dem analogen Signal \(x(t) \) multipliziert. Da die Impulsfolge nur zu den Zeitpunkten \(k \cdot T_A \) ungleich null ist, genügt es, die Funktion \(x(t) \) nur zu diesen Zeitpunkten zu betrachten. Es ergibt sich als Darstellung für das ideal abgetastete Signal \(x_A(t) \)

\[
x_A(t) = x(t) \cdot a(t) = x(t) \cdot \sum_{k=-\infty}^{\infty} \delta(t-k \cdot T_A) = \sum_{k=-\infty}^{\infty} x(k \cdot T_A) \cdot \delta(t-k \cdot T_A)
\]

(2.7)

Bild 2.5 verdeutlicht die mathematische Beschreibung der Signale grafisch. Dabei werden die unendlich großen Impulse als Pfeile dargestellt, ihre Höhe repräsentiert das Gewicht des jeweiligen Impulses.

Wird dieser Vorgang im Frequenzbereich betrachtet, wird deutlich, dass durch das Abtasten das Spektrum des Signals periodisch wird. Im Zeitbereich wird das Signal \(x(t) \) mit der Abtastfunktion \(a(t) \) multipliziert. Der Multiplikation im Zeitbereich entspricht eine Faltung im Frequenzbereich. Damit muss im Frequenzbereich das Spektrum des Signals \(X(\omega) \) mit dem Spektrum der Abtastfunktion \(A(\omega) \) gefaltet werden. Hierfür wird zunächst das Spektrum der Abtastfunktion errechnet.

\[
\mathcal{F}\{a(t)\} = \mathcal{F}\left\{ \sum_{k=-\infty}^{\infty} \delta(t-k \cdot T_A) \right\}
\]

(2.8)

Die Gleichung kann als Fourier-Reihe dargestellt werden (vgl. Übungsaufgabe 2.7.6) und in den folgenden Ausdruck umgeformt werden.
\[\mathcal{A}(a(t)) = \mathcal{A} \left(\sum_{k=-\infty}^{\infty} \delta(t - k \cdot T_A) \right) = \frac{2 \cdot \pi}{T_A} \sum_{k=-\infty}^{\infty} \delta \left(\omega - k \cdot \frac{2 \cdot \pi}{T_A} \right) = \frac{2 \cdot \pi}{T_A} \sum_{k=-\infty}^{\infty} \delta (\omega - k \cdot \omega_A) \] (2.9)

Dies bedeutet, dass die Abtastfunktion auch im Frequenzbereich einer Impulsfolge entspricht, wobei der Abstand der Impulse proportional zur Abtastfrequenz

\[\omega_A = 2 \cdot \pi \cdot f_A = \frac{2 \cdot \pi}{T_A} \] (2.10)

ist. Über die Faltungsbeziehung ergibt sich für die abgetastete Funktion \(x_A(t) \) im Frequenzbereich

\[X_A(\omega) = \frac{1}{2 \cdot \pi} \left\{ X(\omega) * \left(\frac{2 \cdot \pi}{T_A} \sum_{k=-\infty}^{\infty} \delta \left(\omega - k \cdot \frac{2 \cdot \pi}{T_A} \right) \right) \right\} \]
\[= \frac{1}{T_A} \sum_{k=-\infty}^{\infty} X(\omega) \cdot \frac{2 \cdot \pi}{T_A} = \frac{1}{T_A} \sum_{k=-\infty}^{\infty} X(\omega - k \cdot \omega_A) \] (2.11)

Die Abtastung mit einer idealen Impulsreihe führt demnach zu einer in \(\omega_A \) periodischen Fortsetzung des Spektrums \(X(\omega) \) des kontinuierlichen Zeitsignals \(x(t) \) und zu einer Multiplikation mit dem Faktor \(1/T_A \). Bild 2.6 stellt die Spektren im idealen Abtastprozess schematisch dar.

Die periodische Wiederholung des Spektrums ist dafür verantwortlich, dass die Abtastwerte von zu langsam abgetasteten Signalen mit den Frequenzen \(f_0 \) und \(f_0 + n \cdot f_A \) nicht unterschieden werden können. Die mathematische Herleitung bestätigt damit den in Bild 2.4 dargestellten Sachverhalt.

Der ursprüngliche Frequenzbereich des Signals \(x(t) \) mit dem Frequenzbereich \(-\omega_G \leq \omega \leq \omega_G \) wird als Basisband des Signals bezeichnet. Durch den Abtastvorgang wird das Basisband periodisch in \(\omega_A \) wiederholt.

2.3.2 Ideale Rekonstruktion eines Signals

Da bei der idealen Abtastung das Spektrum eines Signals periodisch wiederholt und mit dem Faktor \(1/T_A \) multipliziert wird, liegt es auf der Hand, die Wiederholung des Spektrums durch eine entsprechende Filterung zu eliminieren. Durch eine hier ideal angenommene Tiefpass-Funktion mit einer Bandbreite von \(\omega_A/2 \) kann das sogenannte Basisband, also das ursprüngliche Spektrum der Zeitfunktion, isoliert werden. Bild 2.7 verdeutlicht den Filterprozess.
Mathematisch gesehen muss das Spektrum mit einer idealen Tiefpass-Filterfunktion und dem Faktor \(T_A \) multipliziert werden. Das Spektrum ergibt sich damit zu

\[
X(\omega) = G_{TP}(\omega) \cdot X_A(\omega) = T_A \cdot \left(\sigma\left(\omega + \frac{\omega_A}{2}\right) - \sigma\left(\omega - \frac{\omega_A}{2}\right) \right) \cdot \frac{1}{T_A} \cdot \sum_{k=\infty}^\infty X(\omega - k \cdot \omega_A)
\]

(2.12)

Die ideale Rekonstruktion kann auch im Zeitbereich durchgeführt werden. Der Multiplikation im Frequenzbereich entspricht im Zeitbereich die Faltung der entsprechenden Zeitfunktionen. Die Impulsantwort \(g_{TP}(t) \) der Filterfunktion \(G_{TP}(\omega) \) ist nach den Rechenregeln der Fourier-Transformation

\[
g_{TP}(t) = \frac{T_A}{\pi} \cdot \sin\left(\frac{\omega_A}{2} \cdot t\right)
\]

(2.13)

Die Funktion ist in Bild 2.8 dargestellt. Zum Zeitpunkt \(t = 0 \) ist die Funktion 1, zu den Zeitpunkten \(k \cdot T_A \) ist die Funktion null.
Das Signal setzt sich aus der Summe von Termen \(g_{TP}(t) \), die jeweils um \(k \cdot T_A \) verschoben sind und mit dem Gewicht \(x(k \cdot T_A) \) multipliziert werden. Bild 2.9 stellt die Rekonstruktion im Zeitbereich dar.

\[
x(t) = g_{TP}(t) \cdot x_A(t) = \frac{T_A}{\pi} \cdot \sum_{k=-\infty}^{\infty} x(k \cdot T_A) \cdot \delta(t - T_A \cdot k)
\]

Das Ergebnis der Überlagerung ist erwartungsgemäß die ursprüngliche Zeitfunktion \(x(t) \).

2.3.3 Abtasttheorem nach Shannon

In den vorangegangenen Abschnitten wird gezeigt, dass sich das Spektrum eines abgetasteten Signals periodisch mit der Abtastfrequenz \(\omega_A \) fortsetzt. Diese periodische Wiederholung ist Grundlage für die Herleitung des Abtasttheorems nach Shannon.

Gegeben sei ein bandbegrenztes Signal \(x(t) \), das abgetastet werden soll. Durch die Physik des Systems ist die Bandbreite des Signals auf Frequenzen \(\omega \leq \omega_G \) begrenzt. Bei der Abtastung des Signals wird das Spektrum der Zeitfunktion, wie in Bild 2.7 dargestellt, periodisch in \(\omega_A \) wiederholt. Durch eine hier ideal angenommene Tiefpass-Funktion kann das sogenannte Basisband, also das ursprüngliche Spektrum der Zeitfunktion, isoliert werden. Bild 2.7 verdeutlicht den Filterprozess.

Ist die Abtastzeit \(T_A \) zu groß, wird \(\omega_A \) zu klein und die einzelnen Spektren der abgetasteten Funktion überlagern sich. Signalverzerrungen, die sich beim Abtasten durch Überlagerung der Spektren ergeben, werden als Aliasing bezeichnet. Damit die einzelnen Spektren voneinander getrennt bleiben, muss nach Bild 2.7 die Bedingung

\[
\omega_G \leq \omega_A - \omega_G
\]

beziehungsweise

\[
\omega_A = 2 \cdot \pi \cdot \frac{1}{T_A} \geq 2 \cdot \omega_G
\]
erfüllt sein. Dieses Ergebnis wird als Abtasttheorem bezeichnet. Die Abtastfrequenz ω_A muss mindestens doppelt so groß sein wie die Bandbreite ω_G des abzutastenden Signals. Damit muss für die Abtastzeit T_A gelten:

$$T_A \leq \frac{\pi}{\omega_G}$$ \hspace{1cm} (2.17)

Bild 2.10 zeigt die Spektren abgetasteter Signale für genügend große Abtastfrequenz, gerade ausreichende und zu kleine Abtastfrequenz.

Im ersten Fall $X_{A1}(\omega)$ wird mit einer Abtastfrequenz gearbeitet, die deutlich größer ist als das Abtasttheorem vorschreibt. Dieser Fall wird als Oversampling bezeichnet. Durch die hohe Abtastfrequenz werden das Spektrum im Basisband und die nächsthöheren Spektren deutlich voneinander getrennt, sodass mit einem Tiefpass-Filter mit vergleichsweise flachem Übergang zwischen Sperr- und Durchlass-Bereich gearbeitet werden kann.

Im zweiten Fall $X_{A2}(\omega)$ wird das Abtasttheorem gerade eingehalten. Es zeigt sich aber, dass die Rekonstruktion nur mit einem idealen Tiefpass-Filter erfolgen kann, der technisch nicht realisiert werden kann. Dieser Fall entspricht dem theoretischen Grenzfall des Abtasttheorems.

Im Fall einer zu kleinen Abtastfrequenz $X_{A3}(\omega)$ überlagern sich die Spektren. Das Signal kann selbst mit einem idealen Tiefpass-Filter nicht fehlerfrei rekonstruiert werden. Es kommt zu Signalverzerrungen oder Aliasing.

Bild 2.10: Spektren abgetasteter Signale für genügend große Abtastfrequenz $X_{A1}(\omega)$, gerade ausreichende Abtastfrequenz $X_{A2}(\omega)$ und für zu kleine Abtastfrequenz $X_{A3}(\omega)$

Beispiel: Abtastrate einer Sound-Karte

Eine Abtastfrequenz \(f_A = 44 \text{ kHz} \) ermöglicht die Aufnahme und Wiedergabe bis zu einer theoretischen Bandbreite von

\[
f_G = \frac{f_A}{2} = 22 \text{ kHz}
\]

(2.18)

Mit der Sound-Karte können damit Musiksignale mit einer maximalen Frequenz von 22 kHz verarbeitet werden.

2.3.4 Bandbegrenzung des abzutastenden Signals

Das Signal \(x(t) \) hat ein Spektrum, dessen Information im Nutzbereich \(-\omega_N < \omega < \omega_N \) liegt. Es besitzt aber zum Beispiel aufgrund von Störungen ein breiteres Spektrum. Damit existieren auch oberhalb der als maximal angenommenen Bandbreite \(\omega_N \) Spektralanteile. Durch den Einsatz eines Tiefpass-Filter, das den Frequenzbereich \(\omega < -\omega_N \) und den Bereich \(\omega > \omega_N \) dämpft, ergibt sich bei dem neu entstande-
nen Signal ein Spektrum $X_{TP}(\omega)$, das im Nutzbereich dem des ursprünglichen Signals entspricht, im übrigen Bereich aber stärker gedämpft ist. Dieses Signal kann wegen der geringeren Bandbreite $\omega_{GTP} < \omega_G$ mit einer geringeren Frequenz abgetastet werden und der Rauschanteil wird durch die Bandbegrenzung reduziert.

In technischen Anwendungen wird deshalb praktisch immer ein Eingangstiefpass eingesetzt, der das Spektrum des Eingangssignals auf die notwendige Bandbreite begrenzt. Die Spezifikation von Filtern und ihr Entwurf werden im Teil A dieser Buchreihe diskutiert.

Beispiel: Abtastung Drucksensor im Steuergerät

Für die Regelung des Ladedrucks von Turboladern werden Drucksensoren eingesetzt.

![Bild 2.13: Drucksensor zur Messung des Ladedrucks (Bosch)](image)

Der Drucksensor, der den Ladedruck misst, hat laut Datenblatt eine Zeitkonstante $T = 0.1$ ms. Das entspricht einer 3dB-Grenzfrequenz von

$$\omega_G = \frac{1}{T} = 10 \text{ krad} / \text{s} \quad (2.19)$$

Das Motor-Steuergerät tastet das Signal mit einer Abtastzeit T_A von 1 ms ab. Es ergibt sich eine Abtastfrequenz von

$$\omega_A = \frac{2 \cdot \pi}{T_A} = 6.283 \text{ krad} / \text{s} \quad (2.20)$$

Das Abtasttheorem ist demnach nicht erfüllt. Außerdem sind dem Sensorsignal Störungen überlagert, die Spektralanteile weit oberhalb der Grenzfrequenz besitzen können. Zur Vermeidung von Aliasing-Effekten wird ein Anti-Aliasing-Filter eingesetzt. Es weist eine Zeitkonstante von $T_{TP} = 0.6$ ms auf, was einer 3dB-Grenzfrequenz von

$$\omega_{TP} = \frac{1}{0.6 \text{ ms}} = 1.67 \text{ krad} / \text{s} < 3.14 \text{ krad} / \text{s} = \frac{\omega_A}{2} \quad (2.21)$$

2.4 Reale Abtastung und Rekonstruktion

Die zuvor vorgestellte ideale Abtastfunktion \(a(t) \) ist nicht realisierbar, da ideale Impulse technisch nicht erzeugt werden können. Dies liegt an der unendlich kurzen Dauer sowie der unendlichen Steilheit und Höhe von Impulsen. Aus dieser Überlegung ergeben sich die reale Abtastung und die reale Rekonstruktion von Signalen.

2.4.1 Reale Abtastung eines Signals

Reale beziehungsweise technisch realisierbare Abtastsysteme brauchen eine Wandlungszeit \(T_W \), um aus dem analogen Signal ein zeitdiskretes Signal zu generieren. Die Wandlungszeit ergibt sich zum Beispiel aus einem Ladungstransport oder einem Approximationsprozess, bei dem das Signal als Mittelwert über einen Zeitraum \(T_W \) durch Integration bestimmt wird. Dieser Prozess wird mit einer Fensterfunktion

\[
w(t) = \frac{1}{T_W} \left(\sigma \left(t + \frac{T_W}{2} \right) - \sigma \left(t - \frac{T_W}{2} \right) \right) \tag{2.22}
\]

modelliert. Die Abtastfunktion ist keine Impulsfolge mehr, sondern eine Folge von Rechtecken. Für die mathematische Beschreibung ist es wesentlich, dass die Fläche jedes einzelnen Rechteckes der Fläche eines Impulses entspricht und damit zu eins wird. Bei einer Breite von \(T_W \) ist deshalb die Höhe der Rechtecke \(1/T_W \). Das an der Stelle \(t = 0 \) liegende Rechteck kann damit als Zeitfunktion \(w(t) \) dargestellt werden. Zum Zeitpunkt \(k \cdot T_A \) ergibt sich der aktuelle Abtastwert zu

\[
x_{AW} (k \cdot T_A) = \int_{-\infty}^{\infty} x(t) \cdot w(t - k \cdot T_A) dt \tag{2.23}
\]

Bild 2.14 verdeutlicht das Vorgehen für eine Wandlungszeit \(T_W = 0.5 \cdot T_A \).

Wegen der Symmetrie der Fensterfunktion kann der Ausdruck unter Berücksichtigung der Faltungoperation umgeformt werden zu

\[
x_{AW} (k \cdot T_A) = \int_{-\infty}^{\infty} x(t) \cdot w(k \cdot T_A - t) dt = x(t) \ast w(t) \big|_{t=k \cdot T_A} \tag{2.24}
\]

Der Faltung zweier Zeitsignale entspricht im Bildbereich die Multiplikation der Spektren.
2.4 Reale Abtastung und Rekonstruktion

\[x(t) \ast w(t) \rightarrow X(\omega) \cdot W(\omega) \]

(2.25)

Durch die Berechnung des Abtastwertes über das Integral in Gleichung (2.23) wird das Spektrum \(X(\omega) \) mit dem Spektrum der Fensterfunktion

\[W(\omega) = \frac{2}{\omega \cdot T_w} \sin \left(\frac{\omega \cdot T_w}{2} \right) \]

(2.26)

multipliziert. Das real abgetastete Signal \(x_{AW}(t) \) kann mit diesen Überlegungen dargestellt werden als

\[x_{AW}(t) = \sum_{k=-\infty}^{\infty} x_{AW}(k \cdot T_A) \cdot \delta(t - k \cdot T_A) \]

(2.27)

Es besitzt das Spektrum

\[X_{AW}(\omega) = (X(\omega) \cdot W(\omega)) \ast A(\omega) \]

\[= \frac{1}{2 \cdot \pi} \left(X(\omega) \cdot \frac{2}{\omega \cdot T_w} \sin \left(\frac{\omega \cdot T_w}{2} \right) \right) \ast \frac{2}{T_A} \sum_{k=-\infty}^{\infty} \delta(\omega - k \cdot \omega_A) \]

(2.28)

Wie bei der idealen Abtastung wird das Spektrum mit \(1/T_A \) skaliert und periodisch in \(\omega_A \) wiederholt. Allerdings wird das Spektrum des zeitkontinuierlichen Signals vor der periodischen Wiederholung mit dem Spektrum der Fensterfunktion multipliziert. Dieser Vorgang wird in Bild 2.15 für eine Wandlungszeit \(T_w = T_A \) und \(T_w = 0.1 \cdot T_A \) dargestellt. Die Auswirkung auf das Spektrum im Basisband steigt mit steigender Wandlungszeit. In Analog-Digital-Wandlern wird der Effekt durch den Einsatz inverser Filter kompensiert.
2.4.2 Reale Rekonstruktion eines Signals

Nach der Abtastung liegen einzelne Abtastwerte vor, die das Signal zu den entsprechenden Abtastzeiten charakterisieren. Für einige Anwendungen ist es notwendig, diese zeitdiskreten Signale wieder in zeitkontinuierliche Signale zu wandeln. Die bereits diskutierte ideale Rekonstruktion eines Signals ist wegen des ideal angenommenen Tiefpass-Filters nicht kausal und kann deshalb technisch nicht realisiert werden. Eine technisch realisierbare Rekonstruktion des ursprünglichen Signals aus den Abtastwerten wird in zwei Schritten realisiert:

- Erzeugung eines stufenförmigen Ausgangssignals mit einem Halteglied
- Tiefpass-Filterung

\[x_A(t) \xrightarrow{\text{Halteglied}} x_H(t) \xrightarrow{\text{Tiefpass}} x_{TP}(t) \]

Bild 2.16: Signalfluss zur realen Rekonstruktion
Erzeugung eines stufenförmigen Ausgangssignals mit einem Halteglied

Die einzelnen Abtastwerte stellen das Signal zu den entsprechenden Abtastzeiten dar. Das Halteglied H hält den aktuell gültigen Wert des digitalen Systems am Ausgang fest, bis der nächsten Abtastwert zur Verfügung steht. Dadurch steht zu jedem Zeitpunkt t ein Ausgangssignal zur Verfügung und das Signal ist wieder zeitkontinuierlich. Bild 2.17 zeigt an einem Beispiel das abgetastete Signal x_A(t) und das Signal x_H(t) nach dem Halteglied.

Bild 2.17: Rekonstruktion eines abgetasteten Signals mit Halteglied

Im Zeitbereich kann das kontinuierliche Signal nach dem Halteglied analog zur realen Wandlung mit Rechteckfunktionen beschrieben werden.

\[w(t) = \left(\sigma(t) - \sigma(t - T_A)\right) \]

(2.29)

Das Signal nach dem Halteglied kann wieder als Faltung ausgedrückt werden.

\[x_H(t) = \sum_{k=-\infty}^{\infty} x_A(k \cdot T_A) \left\{\sigma(t - k \cdot T_A) - \sigma(t - (k + 1) \cdot T_A)\right\} \]

\[= \left(\sum_{k=-\infty}^{\infty} x(k \cdot T_A) \cdot \delta(t - k \cdot T_A)\right) \ast \left(\sigma(t) - \sigma(t - T_A)\right) \]

(2.30)

Der Faltung der Signale im Zeitbereich entspricht die Multiplikation der Spektren im Frequenzbereich. Das Spektrum des Signals nach dem Halteglied ergibt sich damit aus dem Produkt des Spektrums X_A(\omega) und dem Frequenzgang des Halteglieds H(\omega).

\[H(\omega) = \frac{2}{\omega} \cdot \sin\left(\frac{\omega \cdot T_A}{2}\right) \cdot e^{-j \frac{\omega T_A}{2}} \]

(2.31)

Bild 2.18 zeigt das Spektrum des abgetasteten Signals x_A(t) und dem Signal x_H(t) nach dem Halteglied.
Signalabtastung und Rekonstruktion

Durch das Halteglied wird das Spektrum im Bereich der Grenzfrequenz ω_G gedämpft. Diese Dämpfung wirkt sich aber vor allem auf die periodische Fortsetzung des Spektrums aus.

Filterung des stufenförmigen Signals

Zur Vermeidung von Signalsprüngen im rekonstruierten Signal wird das Spektrum nach dem Halteglied mit einem geeigneten Filter gefiltert. Mit der Übertragungsfunktion des Filters ergibt sich der Frequenzgang des rekonstruierten Signals $x_R(t)$ zu

$$X_R(\omega) = X_A(\omega) \cdot \frac{2}{T_A} \cdot \sin \left(\frac{\omega \cdot T_A}{2} \right) \cdot e^{-j\frac{\omega T_a}{2}} \cdot G_R(\omega)$$

(2.32)

Idealerweise würde das Filter die Abweichungen im Basisband des Nutzsignals $-\omega_N < \omega < \omega_N$ kompensieren und die Frequenzanteile ober- und unterhalb des Basisbandes vollständig eliminieren. Bild 2.19 verdeutlicht diesen Ansatz.
Dieses ideale Filter ist wegen der idealen Flankensteilheit nicht realisierbar. Reale Filter beschränken sich auf eine endliche Flankensteilheit. Eine Möglichkeit, die erforderliche Flankensteilheit zu senken, ist eine Steigerung der Abtastrate \(f_A \). Dieser Vorgang wird als Überabtastung oder Oversampling bezeichnet. Durch die höhere Abtastrate werden zwei Effekte erzielt:

- Die Trennung der periodischen Spektren ist größer. Dadurch kann die Ordnung des Filters zur Signal-Rekonstruktion reduziert werden.

Die zum Halteglied inverse Charakteristik im Durchlassbereich kann über ein digitales Filter erreicht werden, der als Teil der digitalen Signalverarbeitung realisiert wird.

2.4.3 Totzeit bei der realen Signalabtastung

\[
T_T = \frac{T_W}{2} + \frac{T_A}{2}
\]

Dazu kommen die Phase des Anti-Aliasing-Filters und des Tiefpass-Filters zur Signalrekonstruktion, sodass gegenüber dem Eingangssignal eine teilweise erhebliche Signalverzögerung entsteht. Die Zeitverzögerung sowie das Einschwingverhalten des rekonstruierten Signals werden an einem Beispiel verdeutlicht.

Beispiel: Signalrekonstruktion

Ein Signal der Form

\[
x(t) = 5 \cdot e^{-0.5t} \cdot (1 + 0.5 \cdot \sin(t)) \cdot (\sigma(t+5) - \sigma(t-5))
\]

wird mit einer Abtastzeit von \(T_A = 1 \) abgetastet, das System besitzt eine Wandlungszeit von \(T_W = 1 \). Es entstehen die in Tabelle 2.1 dargestellten Abtastwerte.
Die Abtastwerte werden über ein Halteglied und einen Tiefpass mit einer Zeitkonstante $T_{TP} = 0.5$ rekonstruiert. Bild 2.20 zeigt das analoge Signal $x(t)$ und das durch Abtastung und Rekonstruktion erzeugte Signal $x_{TP}(t)$ bei Verwendung eines Tiefpass erster Ordnung.

Das rekonstruierte Signal weist zum einen eine Verzögerung von

$$T_f = \frac{T_{TP}}{2} + \frac{T_A}{2} = \frac{T_A}{2} + \frac{T_A}{2} = T_A$$

(2.35)

auf. Außerdem ist das Einschwingen des Tiefpasses nach jedem Quantisierungsschritt zu erkennen.

Diese Signalverzögerung T_f ist insbesondere bei Regelungssystemen kritisch anzusehen. Auch in dieser Beziehung ist eine hohe Abtastrate, die wegen kleiner Abtastzeit und Wandlungszeit zu einer Verringerung der Totzeit führt, vorteilhaft.

Im Online-Portal Systemtheorie Online verdeutlicht die Applikation Signalabtastung und Signalrekonstruktion grafisch, welche Effekte durch Anti-Aliasing-Filter, reale Abtastung und reale Rekonstruktion entstehen.
2.5 Projekt: Abtastprozess bei überlagerten Störungen

2.5.1 Versuchsaufbau

Gleichstrommotor mit Polpaarzahl

Beschleunigungssensor als dynamisches System

Motor auf Halteblech

Induktive Einkopplung von Störungen

2.5.2 Entwurf des Abtastsystems

Anti-Aliasing-Tiefpass

Abtastrate

2.5.3 Signalrekonstruktion

Kausale Rekonstruktion durch Tiefpass-Filterung

Nicht-kausale Rekonstruktion im Zeitbereich
2.6 Literatur

2.6.1 Literaturstellen mit besonders anschaulicher Darstellung

2.6.2 Literaturstellen mit praktischen Anwendungen

2.6.3 Weiterführende Literatur

2.7 Übungsaufgaben - Signalabtastung und Rekonstruktion

2.7.1 Abtastzeit und Zahlenfolgen

Das Signal \(x(t) \) wird mit einer Abtastperiode von \(T_A \) abgetastet.

\[
x(t) = \sin(20 \cdot \pi \cdot t) + \cos(40 \cdot \pi \cdot t)
\]

Das Ergebnis ist eine Zahlenfolge \(x[k] \)

\[
x[k] = \sin\left(\frac{\pi}{5} \cdot k\right) + \cos\left(\frac{2 \cdot \pi}{5} \cdot k\right)
\]

a) Für welchen Wert von \(T_A \) ergibt sich \(x[k] \) aus \(x(t) \)?

b) Ist die Lösung eindeutig? Geben Sie eine alternative Zeitfunktion \(x(t) \), mit der bei derselben Abtastzeit dieselben Abtastwerte entstehen.

2.7.2 Abtasttheorem und Aliasing

Die Signale \(x_1(t) \) und \(x_2(t) \) werden mit den Abtastzeiten \(T_{A1} = 1/400 \) und \(T_{A2} = 1/1500 \) abgetastet.

\[
x_1(t) = \sin(2 \cdot \pi \cdot 100 \cdot t)
\]

\[
x_2(t) = \cos(4000 \cdot \pi \cdot t)
\]

a) Ist das Abtasttheorem eingehalten? Erwarten Sie Aliasing?

b) Stellen Sie das ideal abgetastete Signal mathematisch dar.

c) Skizzieren Sie die Spektren \(X_{A1}(\omega) \) und \(X_{A2}(\omega) \) der abgetasteten Signale, und überprüfen Sie anhand des Spektrums ihre Antwort zu Aufgabenteil a).

2.7.3 Abtasten von Signalen

Das analoge Signal \(x(t) \) mit einer Frequenz \(f_0 = 1 \) kHz wird mit einer Abtastfrequenz \(f_A \) abgetastet.

\[
x(t) = 10 \cdot \sin(2 \cdot \pi \cdot f_0 \cdot t + 30^\circ)
\]

a) Berechnen und skizzieren Sie die ersten 10 Abtastwerte \(x[k] \) des abgetasteten Signals für eine Abtastfrequenz \(f_{A1} = 5 \) kHz. Ist das Abtasttheorem eingehalten?

b) Berechnen und skizzieren Sie die ersten 10 Abtastwerte \(x[k] \) des abgetasteten Signals für eine Abtastfrequenz \(f_{A2} = 0.5 \) kHz. Ist das Abtasttheorem eingehalten?
2.7.4 Spektren abgetasteter Signale
Gegeben sei das Spektrum \(X(\omega) \) des abzustastenden Signals \(x(t) \)

a) Skizzieren Sie das Spektrum des abgetasteten Signals \(X_A(\omega) \) für die Abtastzeiten
\[
T_{A1} = \frac{\pi}{2 \cdot \omega_o} \quad T_{A2} = \frac{\pi}{\omega_o} \quad T_{A3} = \frac{2 \cdot \pi}{\omega_o} \quad T_{A4} = \frac{2 \cdot \pi}{3 \cdot \omega_o}
\]

b) In welchen Fällen tritt Aliasing auf?
c) In welchem Fall wird kritisch abgetastet, das Abtasttheorem also exakt eingehalten?

2.7.5 Rekonstruktionsfilter mit endlicher Steilheit
Gegeben ist das Spektrum \(X(\omega) \) eines Signals \(x(t) \). Zur Rekonstruktion wird ein Tiefpass-Filter eingesetzt, das den Amplitudengang \(A_{TP}(\omega) \) besitzt.

Wie groß muss die Abtastfrequenz mindestens sein, damit Aliasing vermieden wird?

2.7.6 Fourier-Transformierte der idealen Abtastfunktion
Berechnen Sie die Fourier-Transformierte der idealen Abtastfunktion
\[
a(t) = \sum_{k=-\infty}^{\infty} \delta(t - T_A \cdot k)
\]
2.7.7 Fourier-Transformierte abgetasteter Signale

Gegeben sei das Signal $x(t)$

![Diagramm](image-url)

a) Berechnen Sie die Fourier-Transformierte $X(\omega)$, berechnen Sie ihren Betrag und skizzieren Sie ihn.

b) Nehmen Sie an, dass $x(t)$ in Abständen von $T_A = 0.2$ abgetastet wird, sodass eine Impulsfolge $x_A[k]$ entsteht. Berechnen Sie die Fourier-Transformierte $X_A(\omega)$ und skizzieren Sie deren Betrag.

c) Das Signal $x(t)$ wird alle $T_0 = 2$ wiederholt, sodass ein periodisches Signal $x_p(t)$ entsteht. Berechnen Sie die Koeffizienten der Fourier-Reihe und skizzieren Sie das Amplitudenspektrum.

d) Das periodische Signal aus Teilaufgabe c) wird alle $T_A = 0.2$ s abgetastet. Leiten Sie die Koeffizienten der Fourier-Reihe ab und skizzieren Sie das Amplitudenspektrum.

2.7.8 Reale Rekonstruktion

Gegeben ist ein sinusförmiges Signal der Form

$$u(t) = 1 \cdot \cos(2000 \cdot \pi \cdot t)$$

a) Zeichnen Sie das Spektrum des Signals in ein Diagramm.

Das Signal wird mit einer Abtastfrequenz von $f_A = 750$ Hz ideal abgetastet.

b) Erfüllt der Abtastprozess das Abtasttheorem? Begründen Sie Ihre Antwort.

c) Skizzieren Sie das Spektrum des abgetasteten Signals.

Zur Rekonstruktion wird das Signal mit einem Halteglied, das die Fourier-Transformierte

$$W(\omega) = \frac{2}{\omega} \cdot \sin\left(\frac{\omega \cdot T_A}{2}\right) \cdot e^{-j \omega T_A / 2}$$

besitzt, und einem idealen Tiefpass mit der Grenzfrequenz $f_G = 750$ Hz rekonstruiert.

d) Skizzieren den Amplitudengang des rekonstruierten Signals.
2.7.9 Oversampling

Auf einer CD werden Audio-Signale gespeichert, die eine Bandbreite $f_G = 20$ kHz besitzen. Die Abtastfrequenz beträgt $f_{A1} = 44.1$ kHz.

a) Skizzieren Sie den Frequenzgang des analogen Tiefpasses mit der minimalen Steilheit, die zur fehlerfreien Rekonstruktion ausreicht.

b) Vielfach wird in den CD-Spielern eine Überabtastung durchgeführt, bei der zum Beispiel die Abtastrate von $f_{A2} = 2 \cdot f_{A1}$ gewählt wird (2-fach Oversampling). Skizzieren Sie auch für diesen Fall den Frequenzgang des Filters mit der minimalen Steilheit, die gerade noch zur fehlerfreien Rekonstruktion ausreicht.

2.7.10 Abtasten bei Störungen

Gegeben ist die folgende Sprungantwort eines PT1-Gliedes:

![Sprungantwort PT1-Glied](image)

a) Schätzen Sie die maximale Frequenz ω_G des Signals über die 3-dB-Grenzfrequenz ab.

Das Signal wird mit einer Abtastfrequenz $\omega_A = 4 \cdot \omega_G$ abgetastet.

b) Berechnen Sie die Abtastfrequenz ω_A.

c) Ist das Abtasttheorem eingehalten?

Eine sinusförmige Störung mit der Amplitude $A_S = 2$ V und einer Frequenz $\omega_S = 15 \cdot \omega_G$ wird in das Signal eingekoppelt. Diese Störung soll mit einem einfachen RC-Tiefpass beseitigt werden, um weiterhin das Abtasttheorem einhalten zu können. Die Grenzfrequenz des Tiefpasses wird auf $\omega_{TP} = 1.5 \cdot \omega_G$ gesetzt.

d) Wie wird ein solcher Tiefpass bezeichnet?

2.7.11 Reale Abtastung
Gegeben ist das Signal \(x(t) \) mit einer Frequenz \(f_0 = 1 \) kHz.
\[
x(t) = 5 \cdot \sin(2 \cdot \pi \cdot f_0 \cdot t)
\]
a) Skizzieren Sie das analoge Signal.
Das Signal wird mit einer Frequenz \(f_A = 5 \) kHz abgetastet. Die Wandlung eines einzelnen Wertes dauert \(T_W = 50 \mu s \).
b) Skizzieren Sie die Abtastfunktion \(a(t) \).
c) Skizzieren Sie das real abgetastete Signal \(x_A(t) \).
d) Berechnen Sie, wie groß die Amplitude des abgetasteten Signals gegenüber der Amplitude des analogen Signals ist.

2.7.12 Interpolation im Zeitbereich
Gegeben ist ein Signal \(x(t) \), das mit der Abtastzeit \(T_{A1} \) abgetastet wird. Es ergibt sich das ideal abgetastete Signal \(x_{1A}(t) \). Das kontinuierliche Signal \(x(t) \) weist folgendes Spektrum auf \((\omega_G = 1/6 \cdot \omega_{A1})\).

\[
\omega_{A1} \quad \omega_G \quad \omega_G
\]

a) Skizzieren Sie das Spektrum des mit \(\omega_{A1} \) abgetasteten Signals.
Die Abtastrate des Signals soll künstlich erhöht werden, indem zwischen den Abtastwerten des Signals \(x_{1A}(t) \) der Mittelwert der benachbarten Werte eingefügt wird.
b) Geben Sie eine mathematische Darstellung des Signals \(x_{2A}(t) \) an.
c) Berechnen Sie von dem Signal \(x_{2A}(t) \) und skizzieren Sie den Betrag des Spektrums.
d) Vergleichen Sie das Spektrum des interpolierten Signals \(x_{2A}(t) \) mit dem Signal, das durch ideales Abtasten von \(x(t) \) mit der Abtastzeit \(T_{A2} = T_{A1}/2 \) entsteht.
2.8 Musterlösungen - Signalabtastung und Rekonstruktion

2.8.1 Abtastzeit und Zahlenfolgen

a) Aus der Aufgabenstellung ergeben sich die Bedingungen

\[20 \cdot \pi \cdot k \cdot T_A = \frac{\pi}{5} \cdot k \]

und

\[40 \cdot \pi \cdot k \cdot T_A = \frac{2\cdot\pi}{5} \cdot k \]

Beide Gleichungen sind linear voneinander abhängig, sodass nur eine Gleichung betrachtet werden muss.

\[20 \cdot \pi \cdot k \cdot T_A = \frac{\pi}{5} \cdot k \]

Auflösen nach \(T_A \) führt zu

\[T_A = \frac{1}{5} \cdot \frac{1}{20} = \frac{1}{100} \]

b) Das Signal \(x(t) \) ist periodisch in \(T_0 = 1/10 \), damit ist \(f_0 = 10 \). Deshalb können die Abtastwerte \(x[k] \) zum Beispiel auch durch das Signal

\[x(t) = \sin(2 \cdot \pi \cdot (10 + 100) \cdot t) + \cos(2 \cdot \pi \cdot (20 + 100) \cdot t) \]

\[= \sin(2 \cdot \pi \cdot 110 \cdot t) + \cos(2 \cdot \pi \cdot 120 \cdot t) \]

erzeugt werden.

2.8.2 Abtasttheorem und Aliasing

a) Die Abtastfrequenz für Signal \(x_1(t) \) ergibt sich aus

\[f_{A1} = \frac{1}{T_{A1}} = 400 \text{ Hz} \]

Die maximale Frequenz des Signals \(x_1(t) \) beträgt \(f_{G1} = 100 \) Hz. Damit ist die Abtastfrequenz eingehalten, denn es gilt:

\[f_{A1} = 4 \cdot f_G \geq 2 \cdot f_G \]

Die Abtastfrequenz für Signal \(x_2(t) \) ergibt sich aus

\[f_{A2} = \frac{1}{T_{A2}} = 1500 \text{ Hz} \]

Die maximale Frequenz des Signals \(x_2(t) \) beträgt \(f_{G2} = 2000 \) Hz. Damit ist die Abtastfrequenz nicht eingehalten, und es ist mit Aliasing zu rechnen.

b) Die Zeitpunkte, an denen das Signal abgetastet wird, sind \(t_k = k \cdot T_A \). Daraus ergibt sich die Darstellung...
\[x_{A1}(t) = x_1(t) \cdot a(t) = \sum_{k=-\infty}^{\infty} x_1(k \cdot T_{A1}) \cdot \delta(t - k \cdot T_{A1}) = \sum_{k=-\infty}^{\infty} \sin\left(\frac{\pi}{400} \cdot k \cdot \frac{1}{400}\right) \cdot \delta(t - k \cdot \frac{1}{400}) \]

Vereinfacht können die Abtastwerte als Zahlenfolge \(x[k] \) angegeben werden.

\[x_{A1}[k] = \sin\left(\frac{\pi}{2} \cdot k\right) \]

Für Signal 2 ergibt sich entsprechend

\[x_{A2}(t) = x_2(t) \cdot a(t) = \sum_{k=-\infty}^{\infty} x_2(k \cdot T_{A1}) \cdot \delta(t - k \cdot T_{A1}) = \sum_{k=-\infty}^{\infty} \cos\left(\frac{\pi}{1500} \cdot k \cdot \frac{1}{1500}\right) \cdot \delta(t - k \cdot \frac{1}{1500}) \]

Vereinfacht können die Abtastwerte als Zahlenfolge \(x[k] \) angegeben werden.

\[x_{A2}[k] = \cos\left(\frac{\pi}{15} \cdot k\right) \]

c) Zur Herleitung des Spektrums \(X_{A1}(\omega) \) wird zunächst das Spektrum des kontinuierlichen Signals \(X_1(\omega) \) skizziert. Durch die Abtastung wird das Spektrum des kontinuierlichen Signals \(X_1(\omega) \) in \(\omega \) periodisch wiederholt und mit dem Wert \(1/T_{A1} \) multipliziert.

\[\omega_{A1} = \frac{2 \cdot \pi}{T_{A1}} = 2 \cdot \pi \cdot 400 = 800 \cdot \pi \]

Im Basisband ändert sich das Spektrum nicht, es findet kein Aliasing statt.

Auch zur Herleitung des Spektrums \(X_{A2}(\omega) \) wird auch zuerst das Spektrum des kontinuierlichen Signals \(X_2(\omega) \) skizziert. Durch die Abtastung wird auch hier das Spektrum des kontinuierlichen Signals \(X_2(\omega) \) in \(\omega \) periodisch wiederholt und mit dem Wert \(1/T_{A2} \) multipliziert. Die Darstellung zeigt, dass Aliasing auftritt.

\[\omega_{A2} = \frac{2 \cdot \pi}{T_{A2}} = 2 \cdot \pi \cdot 1500 = 3000 \cdot \pi \]
2.8.3 Abtasten von Signalen

a) Die Abbildung zeigt den Verlauf des analogen Signals sowie die einzelnen Abtastwerte. Das analoge Signal wird mit einer Frequenz von $f_{A1} = 5$ kHz abgetastet. Daraus ergibt sich eine Abtastzeit von

$$T_{A1} = \frac{1}{f_{A1}} = \frac{1}{5000} = 0.2$$

Damit ergeben sich die im linken Bild dargestellten Signalverläufe:

Die maximale Frequenz des Signals beträgt nach der Aufgabenstellung $f_G = 1$ kHz. Das Abtasttheorem ist eingehalten, wenn gilt:

$$f_{A1} \geq 2 \cdot f_G = 2 \text{ kHz}$$

Da die Abtastfrequenz $f_{A1} = 5$ kHz beträgt und damit größer ist als $2 \cdot f_G$, ist das Abtasttheorem eingehalten.

b) Für eine Abtastfrequenz von $f_{A2} = 0.5$ kHz beträgt die Abtastzeit:

$$T_{A2} = \frac{1}{f_{A2}} = \frac{1}{500} = 2$$

Damit ergeben sich die im rechten Bild oben gezeigten Abtastwerte. Die maximale Frequenz des Signals beträgt definitionsgemäß $f_0 = 1$ kHz. Das Abtasttheorem ist eingehalten, wenn gilt:

$$f_{A2} \geq 2 \cdot f_0 = 2 \text{ kHz}$$

Da die Abtastfrequenz $f_{A2} = 0.5$ kHz beträgt und damit kleiner als die Frequenz $2 \cdot f_G$ ist, ist das Abtasttheorem nicht eingehalten.
2.8.4 Spektren abgetasteter Signale

a) Das Spektrum des abgetasteten Signals ergibt sich durch periodische Fortsetzung des Spektrums $X(\omega)$ in ω_A. Zum Skizzieren der Spektren muss in ω_A bestimmt werden.

\[
\omega_{A_1} = \frac{2 \cdot \pi}{\pi} \cdot 2 \cdot \omega_g = 4 \cdot \omega_g \n\]
\[
\omega_{A_2} = \frac{2 \cdot \pi}{\pi} \cdot \omega_g = 2 \cdot \omega_g \n\]
\[
\omega_{A_3} = \frac{2 \cdot \pi}{2 \cdot \pi} \cdot \omega_g = \omega_g \n\]
\[
\omega_{A_4} = \frac{2 \cdot \pi}{3 \cdot \pi} \cdot 3 \cdot \omega_g = 3 \cdot \omega_g \n\]

Es ergeben sich folgende Spektren.

b) Im Fall $T_A = T_{A_3}$ tritt Aliasing auf, da das Abtasttheorem nicht eingehalten wird. In allen anderen Fällen ist das Abtasttheorem eingehalten, und es tritt kein Aliasing auf.

c) Im Fall $T_A = T_{A_2}$ wird kritisch abgetastet, das Abtasttheorem ist gerade eben noch eingehalten.
2.8.5 Rekonstruktionsfilter mit endlicher Steilheit

Der Grenzfall zur Rekonstruktion ergibt sich aus der Bedingung, dass nach der Rekonstruktion kein Spektralanteil des periodisch fortgesetzten Spektrums mehr vorhanden sein darf. Das Signal muss dazu um \(\omega_A = 2.5 \cdot \omega_G \) verschoben werden.

\[
f_A = \frac{\omega_A}{2 \cdot \pi} = \frac{2.5 \cdot \omega_G}{2 \cdot \pi}
\]

2.8.6 Fourier-Transformierte der idealen Abtastfunktion

Die Abtastfunktion \(a(t) \) ist ein periodisches Signal mit der Periodendauer \(T_A \).

\[
a(t) = \sum_{k=-\infty}^{\infty} \delta(t - T_A \cdot k)
\]

Das Signal kann damit als Fourier-Reihe dargestellt werden. Die Fourier-Koeffizienten ergeben sich zu

\[
A_n = \frac{1}{T_A} \int_{-T_A/2}^{T_A/2} \delta(t) \cdot e^{-j n \omega_A t} \, dt = \frac{1}{T_A} \int_{-T_A/2}^{T_A/2} \delta(t) \cdot e^{-j n \omega_A t} \, dt
\]

Wegen der Ausblendeigenschaft der Impulsfunktion gilt:

\[
A_n = \frac{1}{T_A} \int_{-T_A/2}^{T_A/2} \delta(t) \cdot e^{-j n \omega_A t} \, dt = \frac{1}{T_A} \cdot e^{-j n \omega_A T_A} \int_{-T_A/2}^{T_A/2} \delta(t) \, dt = \frac{1}{T_A}
\]

Das Spektrum ist damit an allen Stellen null \(A(\omega) = 0 \), nur an den Stellen \(n \cdot \omega_A \) weist es den Wert \(1/T_A \) auf. Der Zusammenhang zwischen den Fourier-Koeffizienten \(A_n \) und der Fourier-Transformierten \(A(n \cdot \omega_A) \) ergibt sich aus

\[
A(n \cdot \omega_A) = 2 \cdot \pi \cdot A_n
\]

Damit kann das Spektrum der idealen Abtastfunktion dargestellt werden als

\[
A(\omega) = \frac{2 \cdot \pi}{T_A} \sum_{n=-\infty}^{\infty} \delta(\omega - n \cdot \omega_A) = \frac{2 \cdot \pi}{T_A} \cdot \sum_{n=-\infty}^{\infty} \delta\left(\omega - n \cdot \frac{2 \cdot \pi}{T_A}\right) = \frac{2 \cdot \pi}{T_A} \cdot \sum_{n=-\infty}^{\infty} \delta(\omega - n \cdot \omega_A)
\]
2.8.7 Fourier-Transformierte abgetasteter Signale

a) Die Fourier-Transformierte des Signals $x(t)$ errechnet sich durch die Korrespondenz zu

$$X(\omega) = \sin^2 \left(\frac{\omega}{2} \right) \cdot \frac{4}{\omega^2}$$

b) Die Gleichung wird periodisch mit $\omega_A = 2\pi/T_A$ fortgesetzt und mit dem Faktor $1/T_A$ multipliziert, damit ergibt sich das Spektrum des abgetasteten Signals.

$$X_A(\omega) = \frac{1}{T_A} \cdot \sum_{k=-\infty}^{\infty} X(\omega - k \cdot \omega_A) = \frac{1}{T_A} \cdot \sum_{k=-\infty}^{\infty} \frac{4}{(\omega - k \cdot \omega_A)^2} \sin^2 \left(\frac{\omega - k \cdot \omega_A}{2} \right)$$

c) Die Koeffizienten der Fourier-Reihe ergeben sich im Fall der periodischen Fortsetzung zu

$$X_k = \frac{1}{T_p} \cdot \int_{-T_p/2}^{T_p/2} x(t) \cdot e^{-jk \cdot \omega_p t} \, dt = \frac{1}{2} \left[\int_{-1}^{0} (1+t) \cdot e^{-jk \cdot \omega_p t} \, dt + \int_{0}^{1} (t-1) \cdot e^{-jk \cdot \omega_p t} \, dt \right]$$

Die durch diese Rechnung entstandene Formel entspricht abgesehen von dem Faktor $\frac{1}{2}$ der Fourier-Transformierten $X(\omega)$ des Signals $x(t)$ an den Stellen $\omega_k = \omega_0 k$.

$$X_k = \frac{1}{2} \cdot \frac{4}{k^2 \cdot \omega_0^2} \cdot \sin^2 \left(\frac{k \cdot \omega_0}{2} \right)$$

Damit ergibt sich das Spektrum des periodisch fortgesetzten Signals zu

$$X_p(\omega) = 2 \cdot \pi \cdot \sum_{k=-\infty}^{\infty} X_k \cdot \delta(\omega - k \cdot \omega_0) = 2 \cdot \pi \cdot \sum_{k=-\infty}^{\infty} \frac{1}{2} \cdot \frac{4}{k^2 \cdot \omega_0^2} \cdot \sin^2 \left(\frac{k \cdot \omega_0}{2} \right) \cdot \delta(\omega - k \cdot \omega_0)$$

d) Das Spektrum des abgetasteten und periodisch fortgesetzten Signals kann auf 2 Arten berechnet werden. Zum einen kann das Signal als periodische Fortsetzung des Signals aus Aufgabenteil b) betrachtet werden. Durch die periodische Fortsetzung im Zeitbereich wird das Signal im Frequenzbereich an den Stellen $k \cdot \omega_0$ diskretisiert und mit dem Faktor $1/T_p$ skaliert. Das Signal kann aber auch als Abtastung des periodischen Signals aus Aufgabenteil c) angesehen werden. Durch das Abtasten wiederholt sich das Spektrum, und es überlagert sich. Es ergibt sich ein Spektrum mit

$$X_{pk} = \frac{1}{2} \cdot \sum_{n=-\infty}^{\infty} \frac{4}{(\omega_0 - k \cdot \omega_A \cdot n)^2} \cdot \sin^2 \left(\frac{\omega_0 \cdot k - \omega_0 \cdot n}{2} \right)$$

Das Spektrum X_{PA} des periodisch fortgesetzten und abgetasteten Signals ergibt sich dann aus

$$X_{PA}(\omega) = 2 \cdot \pi \cdot \sum_{k=-\infty}^{\infty} X_{pk} \cdot \delta(\omega - k \cdot \omega_0)$$

Die Signale und die zugehörigen Spektren sind in dem folgenden Bild zu finden.
2.8.8 Reale Rekonstruktion

a) mithilfe der Korrespondenz der Fourier-Transformation ergibt sich
\[\Im \{u(t)\} = \Im \{\cos(2 \cdot \pi \cdot 1000 \cdot t)\} = \pi \cdot \left(\delta(\omega + \omega_0) + \delta(\omega - \omega_0) \right) \]

Das Spektrum besteht aus zwei Impulsen an den Stellen \(\omega_0 = \pm 2000 \pi \), die beide das Gewicht \(\pi \) besitzen.

b) Das Spektrum hat eine maximale Frequenz von \(f_{\text{max}} = 1000 \) Hz. Die Abtastfrequenz beträgt \(f_\Lambda = 750 \) Hz. Daraus ergibt sich, dass das Abtasttheorem nicht eingehalten ist.

c) Das Spektrum des abgetasteten Signals ergibt sich aus dem in \(\omega_\Lambda \) periodisch fortgesetzten Spektrum des zeitkontinuierlichen Signals, das mit dem Faktor \(f_\Lambda = 1/T_\Lambda \) gewichtet wird.

\[U_\Lambda(\omega) = \frac{1}{T_\Lambda} \sum_{n=-\infty}^{\infty} U(\omega - n \cdot \omega_\Lambda) \]
d) Durch die Rekonstruktion mit dem Halteglied und einem idealen Tiefpass mit einer Grenzfrequenz von f_G = 750 Hz wird der Spektralanteil, der sich unterhalb von f_G = 750 Hz befindet, und der Spektralbereich, der sich oberhalb von f_G = 750 Hz befindet, eliminiert. In den Grenzen - f_G < f < f_G wird das Spektrum mit dem Frequenzgang des Haltegliedes multipliziert. Es ergibt sich das folgende Spektrum:

2.8.9 Oversampling

a) Das Spektrum des Signals wird periodisch in f_A fortgesetzt. Die niedrigste Frequenz des fortgesetzten Spektrums hat den Wert

\[f_t = f_A - f_G \]

Der Filter hat damit für den Übergang von Durchlass- bis Sperrbereich einen Frequenzbereich von f_G bis f_A - f_G.

b) Durch die höhere Abtastrate ziehen sich die einzelnen Spektren weiter auseinander. Der Frequenzbereich für den Übergang erhöht sich damit zu
2.8.10 Abtasten bei Störungen

a) Durch Einzeichnen der Geraden mit der Anfangssteigung oder die Bestimmung der Zeit, bei der der Sprung 63 % seines Endwertes erreicht, kann die Zeitkonstante des Systems zu $T = \frac{1}{0.01} = 100$ abgelesen werden. Die 3-dB-Grenzfrequenz des Systems berechnet sich damit zu

$$\omega_0 = \frac{1}{T} = \frac{1}{0.01} = 100$$

b) Da die Abtastfrequenz $\omega_A = 4 \cdot \omega_0$ sein soll, ergibt sich

$$\omega_A = 4 \cdot \omega_0 = 400$$

c) Das Abtasttheorem ist eingehalten, wenn die Abtastfrequenz mindestens doppelt so groß ist wie die maximale Frequenz, die in dem Signal, das abgetastet werden soll, vorkommt. Da hier die Abtastfrequenz auf das Vierfache der maximalen Frequenz festgelegt ist, ist das Abtasttheorem zunächst einmal eingehalten.

d) Ein solcher Tiefpass wird als Anti-Aliasing-Tiefpass bezeichnet.

e) Die Störung wird zwar durch den Tiefpass gedämpft, allerdings nicht vollständig eliminiert. Ein RC-Tiefpass erster Ordnung fällt ab der Grenzfrequenz mit 20 dB/Dekade ab. Da die Frequenz der Störung exakt auf dem Zehnfachen der Grenzfrequenz des Filters liegt, wird diese somit um - 20 dB gedämpft. Eine Dämpfung von - 20 dB entspricht einem Faktor von 0.1. Damit liegt die Amplitude der Störung bei 0.2 V.

Die Spektren von zeitkontinuierlichem und abgetastetem Signal sind in den beiden folgenden Diagrammen dargestellt.
Wie die Abbildung zeigt, erscheinen die Frequenzanteile bei \(\pm \omega_S \) im Basisband bei der Frequenz \(\pm \omega_G \). Die Frequenzanteile bei den übrigen Frequenzen ergeben sich aus der periodischen Wiederholung der Spektren wegen des Abtastvorgangs.

2.8.11 Reale Abtastung

Folgende Abbildung zeigt den Verlauf vom analogen Signal a) und das reale Abtastsignal b) sowie das daraus resultierende abgetastete Signal c).

d) Durch das reelle Abtasten wird das Spektrum des Signals mit dem Spektrum des Rechtecks, das zwangläufig beim reellen Abtasten entsteht, multipliziert. Die Fourier-Transformierte eines Rechtecks lautet

\[
W(\omega) = 2 \cdot \frac{\sin(\omega \cdot T_W \cdot \frac{\omega}{2})}{\omega \cdot T_W}
\]

Die Wandlungszeit ist \(T_W = 50 \, \mu s \), damit beträgt bei der Frequenz

\(\omega_b = 2 \cdot \pi \cdot 1 \, kHz \)

die Dämpfung der Sinusschwingung

\[
W(\omega_b) = \frac{\sin(\pi \cdot 50 \cdot 10^{-6} \cdot 1000 \, Hz)}{\pi \cdot 50 \cdot 10^{-6} \cdot 1000 \, Hz} = 0.9959
\]

Die Amplitude des Signals sinkt damit auf \(A = 4.9795 \). Dieser Effekt ist kleiner als 1 % und kann in praktischen Anwendungen oft vernachlässigt werden.
2.8.12 Interpolation im Zeitbereich

a) Das Spektrum wird in \(\omega_1 \) periodisch fortgesetzt und mit dem Faktor \(1/T_{A1} \) multipliziert.

b) Für das Signal \(x_{2A}(t) \) gilt zu den Abtastzeitpunkten mit geraden Indizes

\[
x_{2A}(2 \cdot k \cdot T_{A2}) = x_{1}(k \cdot T_{A1}) \quad \text{mit} \quad T_{A2} = \frac{1}{2} \cdot T_{A1}
\]

und bei ungeraden Indizes

\[
x_{2A}(2 \cdot (k+1) \cdot T_{A2}) = \frac{1}{2} \left(x_{1}(k \cdot T_{A1}) + x_{1}((k+1) \cdot T_{A1}) \right)
\]

Das abgetastete Signal \(x_{2A} \) kann damit dargestellt werden als

\[
x_{2A}(t) = \sum_{k=-\infty}^{\infty} x_{1}(k \cdot T_{A1}) \cdot \delta(t - k \cdot T_{A1}) + \frac{1}{2} \sum_{k=-\infty}^{\infty} \left(x_{1}(k \cdot T_{A1}) + x_{1}((k+1) \cdot T_{A1}) \right) \cdot \delta(t - \frac{2 \cdot k + 1}{2} \cdot T_{A1})
\]

c) Das Spektrum der ersten Summe ist das bereits bekannte Spektrum des in \(T_{A1} \) abgetasteten Signals aus Teil a). Das Spektrum der zweiten Summe wird in zwei Schritten berechnet. Das Spektrum eines Signals \(x_{3} \) ergibt sich zu \(X_{3}(\omega) \)

\[
x_{2A}(t) = \frac{1}{2} \sum_{k=-\infty}^{\infty} \left(x_{1}(k \cdot T_{A1}) + x_{1}((k+1) \cdot T_{A1}) \right) \cdot \delta(t - k \cdot T_{A1})
\]

\[
X_{2A}(\omega) = \frac{1}{2} \left(1 + e^{j \omega T_{A1}} \right) \cdot X_{1A}(\omega)
\]

Durch die Verschiebung um \(T_{A1}/2 \) ergibt sich im Zeitbereich das gesuchte Signal \(x_{4} \) mit dem Spektrum \(X_{4}(\omega) \)

\[
x_{4A}(t) = \frac{1}{2} \sum_{k=-\infty}^{\infty} \left(x_{1}(k \cdot T_{A1}) + x_{1}((k+1) \cdot T_{A1}) \right) \cdot \delta(t - \frac{2 \cdot k + 1}{2} \cdot T_{A1})
\]

\[
X_{4A}(\omega) = \frac{1}{2} \left(1 + e^{j \omega T_{A1}} \right) \cdot X_{1}(\omega) \cdot \cos \left(\frac{\omega \cdot T_{A1}}{2} \right) \cdot X_{1}(\omega) = \cos \left(\frac{\omega \cdot T_{A1}}{2} \right) \cdot X_{1}(\omega)
\]

Das gesamte Spektrum des Signals \(X_{2A}(\omega) \) ergibt sich zu

\[
X_{2A}(\omega) = X_{1A}(\omega) + \cos \left(\frac{\omega \cdot T_{A1}}{2} \right) \cdot X_{1}(\omega)
\]

\[
X_{2A}(\omega) = X_{1A}(\omega) \left[1 + \cos \left(\frac{\omega \cdot T_{A1}}{2} \right) \right]
\]
d) Die interpolierte Funktion ist eine Näherung an die Abtastung mit der doppelten Abtastfrequenz, allerdings wird das Spektrum des Basisbands im Bereich hoher Frequenzen gedämpft und die erste periodische Fortsetzung des Spektrums in ω_A nicht vollständig gedämpft.
3 Zeitdiskrete Signale

Im ersten Abschnitt wird die Klassifizierung von zeitkontinuierlichen Signalen auf zeitdiskrete Signalfolgen übertragen.

Für die Charakterisierung von zeitdiskreten Systemen können Testfolgen als Eingangssignal eingesetzt werden, die eine besonders anschauliche Interpretation des Ausgangssignals ermöglichen. Bei zeitdiskreten Systemen ist dabei die Impulsfolge von großer Bedeutung, weil sie sich als reale Signalfolge darstellen lässt und eine anschauliche Interpretation der Systemantwort ermöglicht. Die Impulsfolge und ähnliche Folgen werden im zweiten Teil dieses Kapitels diskutiert und das Rechnen mit diesen Testfolgen an Beispielen erläutert.

Die hier dargestellten Signaleigenschaften und Rechenmethoden sind denen im zeitkontinuierlichen Bereich sehr ähnlich. Sie sind hier trotzdem ausführlich aufgeführt, um einen Quereinstieg in das Thema der zeitdiskreten Systeme zu ermöglichen.

3.1 Klassen und Eigenschaften von Signalen

Zeitdiskrete Signale sind nur zu bestimmten Zeitpunkten definiert. Es existieren keine Übergänge zwischen zwei aufeinanderfolgenden Werten. Im Fall der Abtastung eines zeitkontinuierlichen Signals \(x(t) \) ergibt sich die Zahlenfolge \(x[k] \) des abgetasteten Signals zu

\[
x[k] = x_A(k \cdot T_A)
\]

(3.1)

Da die Signale nicht mehr kontinuierlich sind, werden sie als Folgen oder Signalfolgen \(x[k] \) bezeichnet. Mit den eckigen Klammern wird der Unterschied zwischen zeitkontinuierlichen Signalen \(x(t) \) und Signalfolgen \(x[k] \) grafisch verdeutlicht. Bild 3.2 zeigt ein Beispiel für eine Signalfolge.
Da die Signalfolge $x[k]$ nur zu definierten Zeitpunkten $k \cdot T_A$ definiert ist, können mathematische Operationen wie Integral und Differential nicht ausgeführt werden. Sie müssen durch entsprechende Operationen für Folgen ersetzt werden. Im ersten Abschnitt dieses Kapitels werden die wesentlichen bisher für zeitkontinuierliche Signale beschriebenen Signaleigenschaften und Rechenoperationen auf zeitdiskrete Signale übertragen.

3.1.1 Determinierte und zufällige Signalfolgen

Determinierte Signalfolgen lassen sich durch eine mathematische Vorschrift in ihrem zeitlichen Verlauf angeben. Sie können implizit oder explizit definiert sein. Bei einer explizit definierten Signalfolge lässt sich der zu einem Index k gehörende Wert direkt ablesen. Ein Beispiel dafür ist eine abklingende Sinusfolge ($0 < r < 1$).

\[
x[k] = 10 \cdot r^k \cdot \sin(\Omega_0 \cdot k)
\]

(3.2)

Bei der impliziten Definition einer Signalfolge ist der Signalwert zwar eindeutig bestimmt, er muss aber zunächst durch weitere Umformungen bestimmt werden. Ein Beispiel für eine implizit definierte Signalfolge ist die Definition über eine Differenzengleichung

\[
x[k-1] + 3 \cdot x[k-2] = 5 \cdot x[k]
\]

(3.3)

3.1.2 Zeitlich begrenzte und kausale Signalfolgen

Zeitdiskrete Signale

Bild 3.4: Darstellung einer beidseitig zeitbegrenzten und einer kausalen Signalfolge

Beidseitig zeitbegrenzte Signalfolgen sind Signale, die nur für einen Bereich \(k_1 \leq k < k_2 \) von null verschieden sind. Einige Signale sind nur einseitig begrenzt, zum Beispiel ist ein für \(k = k_1 \) stattfindender Sprung nur einseitig zeitbegrenzt. Da diese Signalfolgen rechts auf dem Zeitstrahl von null verschieden sind, werden sie als rechtsseitige Signalfolgen bezeichnet. Eine spezielle rechtsseitige Signalfolge ist die kausale Signalfolge, für die gilt:

\[
x[k] = 0 \quad \text{für} \quad k < 0
\]

(3.4)

Damit gelten die Definitionen zeitkontinuierlicher Signale sinngemäß auch für Signalfolgen.

3.1.3 Quadratisch summierbare Signalfolgen

Für die Existenz von unendlichen Reihen zum Beispiel bei der Fourier-Transformation von Folgen oder der sogenannten z-Transformation ist der Begriff der Leistungs- und Energiefolge wesentlich. Wie bei zeitkontinuierlichen Signalen wird von der Vorstellung ausgegangen, dass die an einem Widerstand umgesetzte Leistung proportional zum Quadrat der anliegenden Spannung \(u(t) \) beziehungsweise proportional zum Quadrat des durchfließenden Stromes \(i(t) \) ist.

\[
\rho_L(t) = \frac{u^2(t)}{R} = i^2(t) \cdot R
\]

(3.5)

Für zeitkontinuierliche Signale wird damit die Energie eines Signals berechnet zu

\[
E = \int_{-\infty}^{\infty} \rho_L(t) \, dt = \int_{-\infty}^{\infty} \frac{u^2(t)}{R} \, dt = \int_{-\infty}^{\infty} i^2(t) \cdot R \, dt
\]

(3.6)

und vereinfachend zu der normierten Beschreibung

\[
E = \int_{-\infty}^{\infty} |u(t)|^2 \, dt
\]

(3.7)

übergegangen. Da für zeitdiskrete Signalfolgen keine Integration durchgeführt werden kann, wird für Signalfolgen die Summe

\[
E = \sum_{k=-\infty}^{\infty} |x[k]|^2
\]

(3.8)
als Energie definiert. Mit dieser Definition können Signalfolgen wie zeitkontinuierliche Signale in Energiesignalfolgen und Leistungssignalfolgen eingestuft werden:

Energiesignalfolgen

Energiesignalfolgen haben eine von Null verschiedene und endliche Gesamtenergie in dem Intervall von \(-\infty < k < \infty\). Die mathematische Bedingung für Energiesignalfolgen lautet:

\[
0 < \sum_{k=\infty}^{\infty} |x[k]|^2 < \infty
\]

(3.9)

Diese Bedingung ist für jede zeitbegrenzte und amplitudenbegrenzte Folge erfüllt. Folgen, die gleichzeitig zeit- und amplitudenbegrenzt sind, sind damit immer Energiesignalfolgen.

Leistungssignalfolgen

Leistungssignalfolgen haben dagegen eine von Null verschiedene und endliche mittlere Leistung. Mathematisch ergibt sich folgende Definition für Leistungssignalfolgen:

\[
0 \leq \lim_{K \to \infty} \frac{1}{K} \sum_{k=-K}^{K} |x[k]|^2 < \infty
\]

(3.10)

Für Signalfolgen mit einer begrenzten Amplitude bedeutet das, dass sie nicht zeitbegrenzt sein müssen. Ihre Energie ist zwar unendlich, ihre Energie im Intervall von \(-K\) bis \(K\) ist aber begrenzt.

Signalfolgen, die weder Energie- noch Leistungssignalfolgen sind, spielen in der Systemtheorie praktisch keine Rolle, da technische Vorgänge grundsätzlich mit endlichen Größen verbunden sind.

3.1.4 Symmetrieeigenschaften von Signalfolgen

Die Bestimmung von Signaleigenschaften und Transformationen von Signalfolgen kann wie bei zeitkontinuierlichen Signalen durch Ausnutzen von Symmetrien vereinfacht werden. Deshalb werden Symmetrieeigenschaften diskutiert, mit denen Signalfolgen in gerade und ungerade Signalfolgen eingeteilt werden können. Gerade Signalfolgen sind für alle \(k\) symmetrisch zur Achse \(k = 0\), also zur Ordinatenachse. Für eine gerade Signalfolge gilt deshalb die Bedingung:

\[
x[k] = x[-k]
\]

(3.11)

Eine kosinusförmige Signalfolge mit einem Nullphasenwinkel \(\varphi = 0\) ist ein Beispiel für eine gerade Signalfolge, denn es gilt:

\[
x[k] = \cos\left(\frac{2 \cdot \pi}{T_0} \cdot T_A \cdot k\right) = \cos\left(-\frac{2 \cdot \pi}{T_0} \cdot T_A \cdot k\right) = x[-k]
\]

(3.12)

Ungereade Signalfolgen sind für alle \(k\) punktsymmetrisch zu dem Koordinatenursprung \((0|0)\). Dies kann mathematisch ausgedrückt werden als

\[
x[k] = -x[-k]
\]

(3.13)
Eine sinusförmige Signalfolge ist ein Beispiel für eine ungerade Signalfolge, denn es gilt:

\[
x[k] = \sin \left(\frac{2 \cdot \pi \cdot T_A \cdot k}{T_0} \right) = -\sin \left(\frac{2 \cdot \pi \cdot T_A \cdot k}{-T_0} \right) = -x[-k]
\]

(3.14)

Bild 3.5 zeigt Kosinus- und Sinusfolgen als Beispiele für gerade und ungerade Signalfolgen.

Es existieren Signalfolgen, die weder gerade, noch ungerade sind, sie weisen keine Symmetrie auf. Jede beliebige Signalfolge lässt sich aber in einen geraden und einen ungeraden Anteil aufspalten.

\[
x[k] = x_g[k] + x_u[k]
\]

(3.15)

wobei sich die beiden Anteile ergeben aus

\[
x_g[k] = \frac{1}{2} \cdot (x[k] + x[-k])
\]

(3.16)

und

\[
x_u[k] = \frac{1}{2} \cdot (x[k] - x[-k])
\]

(3.17)

Bild 3.6 verdeutlicht die Zerlegung eines Signals in einen geraden und einen ungeraden Anteil an einem Beispiel.
3.1.5 Zusammenfassung Eigenschaften von Signalfolgen
Zur besseren Übersicht sind in Tabelle 3.1 die diskutierten Eigenschaften für Signalfolgen dargestellt.

Tabelle 3.1: Tabellarische Übersicht über Signaleigenschaften für Signalfolgen

<table>
<thead>
<tr>
<th>Signaleigenschaft</th>
<th>Mathematische Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explizit definierte Signalfolge</td>
<td>Folgenwert kann direkt abgelesen werden, zum Beispiel $x[k] = 10 \cdot r^k \cdot \sin(\Omega_0 \cdot k)$</td>
</tr>
<tr>
<td>Implizit definierte Signalfolge</td>
<td>Folgenwert muss berechnet werden, zum Beispiel $x[k - 1] + 3 \cdot x[k - 2] = 5 \cdot x[k]$ mit Anfangsbedingung $x[0] = x_0$</td>
</tr>
<tr>
<td>Begrenzte Signalfolge</td>
<td>$x[k] = 0$ für $k < k_1$ und / oder $k > k_2$</td>
</tr>
<tr>
<td>Kausale Signalfolge</td>
<td>$x[k] = 0$ für $k < 0$</td>
</tr>
<tr>
<td>Energiesignalfolge</td>
<td>$0 < \sum_{k=\infty}^{\infty}</td>
</tr>
<tr>
<td>Leistungssignalfolge</td>
<td>$0 \leq \lim_{K\to\infty} \frac{1}{K} \sum_{k=-K}^{K}</td>
</tr>
<tr>
<td>Gerade Signalfolge</td>
<td>$x[k] = x[-k]$</td>
</tr>
<tr>
<td>Ungerade Signalfolge</td>
<td>$x[k] = -x[-k]$</td>
</tr>
<tr>
<td>Gerader Anteil</td>
<td>$x_g[k] = \frac{1}{2} \cdot (x[k] + x[-k])$</td>
</tr>
<tr>
<td>Ungerader Anteil</td>
<td>$x_u[k] = \frac{1}{2} \cdot (x[k] - x[-k])$</td>
</tr>
</tbody>
</table>
3.2 Sprung- und Impulsfolgen

3.2.1 Impulsfolge

Die Impulsfolge ist im Gegensatz zur Impulsfunktion nicht als Grenzwert definiert, sondern durch die Bedingung

\[
\delta[k] = \begin{cases}
1 & \text{für } k = 0 \\
0 & \text{für ganzzahlige } k \neq 0
\end{cases}
\]

(3.18)

Im Vergleich zur Impulsfunktion ist die Impulsfolge nicht unendlich hoch, sondern hat eine Höhe, die beim kontinuierlichen System dem Gewicht der Impulsfunktion entspricht. Diese Definition erleichtert das Rechnen mit der Impulsfolge im Vergleich zur Impulsfunktion. Bild 3.7 stellt die Impulsfolge grafisch dar.

![Bild 3.7: Darstellung der Impulsfolge \(\delta[k]\)](image)

Die Impulsfolge wird für die Charakterisierung von Systemen verwendet. Die Impulsfolge ist sowohl zeitlich, als auch von der Amplitude begrenzt. Sie ist eine Energiesignalfolge. Da die Impulsfolge für \(k < 0\) null ist, ist sie eine kausale Folge. Da praktisch alle Werte der Impulsfolge null sind bis auf den Wert, an dem das Argument der Impulsfolge zu null wird, ergibt sich die Summe über die Impulsfolge zu

\[
\sum_{k=-\infty}^{\infty} \delta[k] = 1
\]

(3.19)

Mit der Impulsfolge werden zwei wichtige Methoden realisiert, die für die Darstellung abgetasteter Signale notwendig sind.
Ausblendeigenschaft der Impulsfolge

Mithilfe der Impulsfolge können einzelne Werte einer Folge $x[k]$ selektiert werden.

$$\sum_{k=-\infty}^{\infty} x[k] \cdot \delta[k-k_0] = x[k_0]$$ \hspace{1cm} (3.20)

Diese Bedingung ergibt sich daraus, dass die Impulsfolge für alle Werte von k zu null wird, außer für den Wert $k = k_0$. Für $k = k_0$ nimmt die Impulsfolge den Wert 1 an, die Folge $x[k]$ hat für $k = k_0$ den Wert $x[k_0]$.

Periodische Impulsfolge

Insbesondere bei der Darstellung periodischer Signale wird die periodische Impulsfolge eingesetzt.

$$x[k] = \sum_{n=-\infty}^{\infty} \delta[k-n \cdot K]$$ \hspace{1cm} (3.21)

Jede Impulsfolge ist an allen Stellen null, bis auf die Stelle $k = n \cdot K$. Durch die Summe entsteht eine in K periodische Impulsfolge, die in Bild 3.8 dargestellt ist. Sie wird auch als Impulskamm bezeichnet.

![Bild 3.8: Darstellung der in $K = 5$ periodischen Impulsfolge](image)

3.2.2 Sprungfolge

Die Sprungfolge $\sigma[k]$ ist identisch zur Sprungfunktion im zeitkontinuierlichen Bereich definiert als

$$\sigma[k] = \begin{cases} 0 & \text{für } k < 0 \\ 1 & \text{für } k \geq 0 \end{cases}$$ \hspace{1cm} (3.22)

Wie im zeitkontinuierlichen Bereich ist die Sprungfolge eine wichtige Testfolge. Bild 3.9 stellt die Sprungfolge dar.
Die Sprungfolge wird zum Beispiel dafür verwendet, ideale Einschaltvorgänge zu beschreiben. Die Sprungfolge ist zeitlich nicht begrenzt und ist damit keine Energiesignalfolge. Wegen ihrer begrenzten Amplitude ist die Bedingung für eine Leistungssignalfolge erfüllt. Da die Sprungfolge für \(k < 0 \) null ist, ist sie eine kausale Folge.

Sprung- und Impulsfolge können in Abhängigkeit voneinander dargestellt werden. So kann die Sprungfolge als Summe einzelner verschobener Impulse dargestellt werden.

\[
\sigma[k] = \sum_{\kappa=0}^{\infty} \delta[k - \kappa]
\]

(3.23)

Andererseits ist die Impulsfolge die Differenz zweier Sprungfolgen, die um einen Index \(k = 1 \) gegeneinander verschoben sind.

\[
\delta[k] = \sigma[k] - \sigma[k - 1]
\]

(3.24)

Aus dem Vergleich mit der Abhängigkeit der zeitkontinuierlichen Sprung- und Impulsfunktion ergibt sich ein weiterer interessanter Aspekt: Die Sprungfunktion kann als Integral der Impulsfunktion dargestellt werden. Im zeitdiskreten Bereich wird das Integral durch die Summe ersetzt.

\[
\sigma[k] = \sum_{\kappa=-\infty}^{\infty} \delta[k]
\]

(3.25)

In zeitkontinuierlichen Bereich ist die Impulsfunktion die Ableitung der Sprungfunktion. Im zeitdiskreten Bereich wird die Ableitung durch den Differenzenquotienten ersetzt, sodass gilt:

\[
\delta[k] = \frac{\sigma[k] - \sigma[k - 1]}{k - (k - 1)} = \sigma[k] - \sigma[k - 1]
\]

(3.26)

Im zeitdiskreten Bereich gehen also das Integral in eine Summe und die Ableitung in einen Differenzenquotienten über. Tabelle 3.2 vergleicht die Definition und die Eigenschaften der Impulsfolge und der Impulsfunktion tabellarisch miteinander.
Tabelle 3.2: Vergleich Impulsfunktion und Impulsfolge

<table>
<thead>
<tr>
<th>Eigenschaft</th>
<th>Zeitkontinuierlicher Bereich</th>
<th>Zeitdiskreter Bereich</th>
</tr>
</thead>
</table>
| Definition des Impulses | \(\delta(t) = \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \left(\sigma\left(t + \frac{\varepsilon}{2}\right) - \sigma\left(t - \frac{\varepsilon}{2}\right) \right) \) | \(\delta[k] = \{
 \begin{align*}
 1 & \text{ für } k = 0 \\
 0 & \text{ für } k \neq 0
 \end{align*} \) |
| Integration | \(\int_{-\infty}^{\infty} \delta(\tau) \, d\tau = 1 \) | \(\sum_{k=-\infty}^{\infty} \delta[k] = 1 \) |
| Ausblendeigenschaft | \(\int_{-\infty}^{\infty} x(t) \cdot \delta(t-t_0) \, dt = x(t_0) \) | \(\sum_{k=-\infty}^{\infty} x[k] \cdot \delta[k-k_0] = x[k_0] \) |
| Impuls als Ableitung des Sprungs | \(\delta(t) = \frac{d\sigma}{dt} \) | \(\delta[k] = \sigma[k] - \sigma[k-1] \) |
| Sprung als Integral des Impulses | \(\sigma(t) = \int_{-\infty}^{\infty} \delta(\tau) \, d\tau \) | \(\sigma[k] = \sum_{k=-\infty}^{\infty} \delta[k] \) |

3.2.3 Rechteckfolge

Die Rechteckfolge ist abschnittsweise definiert als

\[
x[k] = \begin{cases}
 0 & \text{für } k < -K \\
 1 & \text{für } -K \leq k < K + 1 \\
 0 & \text{für } K + 1 \leq k
\end{cases} \quad (3.27)
\]

Die Rechteckfolge ist eine Folge mit endlicher Amplitude und endlicher Dauer. Die Bedingung für eine Energiesignalfolge ist deshalb erfüllt. Die Rechteckfolge nach Gleichung (3.27) ist keine kausale Folge, da sie für \(k < 0 \) nicht null ist. Durch eine Verschiebung um \(K \) nach rechts wird die Folge kausal. Beide Folgen sind in Bild 3.10 dargestellt.

![Bild 3.10: Rechteckfolge und verschobene Rechteckfolge](image)
Die Rechteckfolge kann neben der abschnittsweisen Definition auch als Summe zweier Sprungfolgen
dargestellt werden, die um \(- K\) beziehungsweise \(K + 1\) verschoben sind.

\[
x[k] = \sigma[k + K] - \sigma[k - (K + 1)] = \sigma[k + K] - \sigma[k - K - 1]
\]

(3.28)

3.2.4 Signum-Folge

Die Signum-Folge \(s\mathrm{gn}[k]\) ist abschnittsweise definiert als

\[
x[k] = s\mathrm{gn}[k] = \begin{cases} -1 & \text{für } k < 0 \\ +1 & \text{für } k \geq 0 \end{cases}
\]

(3.29)

Auch die Signum-Folge kann mithilfe der Sprungfolge dargestellt werden.

\[
x[k] = s\mathrm{gn}[k] = 2 \cdot \sigma[k] - 1
\]

(3.30)

Bild 3.11 stellt die Signum-Folge grafisch dar. Sie dauert unendlich lange an und ist deshalb keine
Energiesignalfolge. Wegen ihrer konstanten Amplitude ist die Bedingung für eine Leistungssignalfolge erfüllt. Die Signum-Folge ist nicht kausal und kann durch eine zeitliche Verschiebung auch nicht
kausal werden.

3.2.5 Rampenfolge

Die Rampenfolge ist wie im zeitkontinuierlichen Bereich definiert als

\[
x[k] = \begin{cases} 0 & \text{für } k < 0 \\ k & \text{für } k \geq 0 \end{cases}
\]

(3.31)

Bild 3.12 stellt die Rampenfolge grafisch dar.
3.2 Sprung- und Impulsfolgen

Die Rampenfolge kann als Summation über die Sprungfolge beschrieben werden. Dabei muss jedoch beachtet werden, dass die Rampenfolge an der Stelle \(k = 0 \) null ist. Deshalb muss die Rampenfolge dargestellt werden als

\[
x[k] = \sum_{k=-\infty}^{k=1} \sigma[k] = \sum_{k=-\infty}^{k=0} \sigma[k-1]
\]

(3.32)

Auswerten der Summengleichung führt zu der Darstellung

\[
x[k] = k \cdot \sigma[k]
\]

(3.33)

Die Rampenfolge hat weder eine begrenzte Amplitude, noch eine begrenzte Zeitdauer, sie ist weder Energie- noch Leistungssignalfolge. Eine ideale Rampenfolge kann in realen Systemen deshalb nur für ein begrenztes Intervall realisiert werden. Da die Rampenfolge für \(k < 0 \) null ist, ist sie eine kausale Signalfolge.

3.2.6 Dreieckfolge

Die Dreieckfolge ist in Bild 3.13 dargestellt und definiert als

\[
x[k] = \begin{cases}
0 & \text{für } k < -K \\
1+ k / K & \text{für } -K \leq k < 0 \\
1- k / K & \text{für } 0 \leq k < K \\
0 & \text{für } k \geq K
\end{cases}
\]

(3.34)

Die Dreieckfolge kann auf unterschiedliche Art aus den bereits dargestellten Folgen gewonnen werden, zum Beispiel durch Überlagerung von drei Rampenfolgen.

\[
x[k] = \frac{k+K}{K} \cdot \sigma[k+K] - \frac{2 \cdot k}{K} \cdot \sigma[k] + \frac{k-K}{K} \cdot \sigma[k-K]
\]

(3.35)
Die Dreieckfolge ist eine Folge mit endlicher Amplitude und endlicher Dauer. Die Bedingung für eine Energie- und Leistungssignalfolge ist erfüllt. Wie die Rechteckfolge beginnt die Rampenfolge bereits für \(k = -K \). Sie ist deshalb nicht kausal, kann aber durch Verschiebung um \(K \) nach rechts in eine kausale Folge überführt werden.

3.2.7 Zusammenfassung Testfolgen

In Tabelle 3.3 sind die wesentlichen Testfolgen und ihre Darstellungsmöglichkeiten mit der Sprungfolge zusammengefasst.

Tabelle 3.3: Tabellarische Zusammenfassung von Testfolgen und ihrer Beschreibung mit Sprungfolgen

<table>
<thead>
<tr>
<th>Testfolgen</th>
<th>Mathematische Beschreibung durch Sprungfolgen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impulsfolge</td>
<td>(\delta[k] = \sigma[k] - \sigma[k-1])</td>
</tr>
<tr>
<td>Sprungfolge</td>
<td>(\sigma[k] = \sum_{\kappa=-\infty}^{k} \delta[\kappa])</td>
</tr>
<tr>
<td>Rechteckfolge der Länge 2(K+1)</td>
<td>(x[k] = \sigma[k+K] - \sigma[k-K-1])</td>
</tr>
<tr>
<td>Signum-Folge</td>
<td>(x[k] = \text{sgn}[k] = 2 \cdot \sigma[k] - 1)</td>
</tr>
<tr>
<td>Rampenfolge</td>
<td>(x[k] = k \cdot \sigma[k] = \sum_{\kappa=-\infty}^{k} \sigma[\kappa-1])</td>
</tr>
</tbody>
</table>
3.3 Rechnen mit Folgen

Die Berechnung der Ausgangsfolge eines linearen Systems kann auf bekannte Ausgangsfolgen zurückgeführt werden, wenn die Eingangsfolge auf bekannten Folgen basiert. Dazu ist es notwendig, die Folgen mithilfe der in diesem Abschnitt dargestellten Rechenmethoden umrechnen zu können.

3.3.1 Operationen mit Folgen

Für die Umrechnung von Folgen sind mathematische Operationen notwendig. Die wichtigsten elementaren Operationen sind im Folgenden zusammengefasst und an dem Beispiel der Folge

\[x[k] = 10 \cdot r^k \cdot \sin(\Omega \cdot k) \]

(3.36)

grafisch dargestellt.

Skalierung der Amplitude

Die Folge \(a \cdot x[k] \) ist gegenüber der Folge \(x[k] \) verstärkt (\(a > 1 \)) beziehungsweise gedämpft (\(0 < a < 1 \)). Bild 3.14 zeigt die Folge \(x[k] \) und die um einen Faktor 0.5 gedämpfte Signalfolge \(0.5 \cdot x[k] \).

Zeitliche Verschiebung

Die Folge \(x[k-k_0] \) ist gegenüber der Folge \(x[k] \) nach rechts (\(k_0 > 0 \)) beziehungsweise nach links (\(k_0 < 0 \)) verschoben. Bild 3.15 zeigt die Folge \(x[k] \) und die um \(k_0 = 5 \) verschobene Folge \(x[k - 5] \).
Das Vorgehen wird am einfachsten deutlich, wenn über den Folgenindex \(k \) argumentiert wird. Die Folge \(x[k] \) weist zum Zeitpunkt \(k = 1 \) den maximalen Wert auf. Da der Index \(k \) in der Folge \(x[k - 5] \) um 5 verringert wird, weist die Folge \(x[k - 5] \) erst an der Stelle \(k = 6 \) den maximalen Wert auf.

Spiegelung

Die Spiegelung einer Folge an der Stelle \(k = 0 \) kann mathematisch durch die Folge \(x[-k] \) dargestellt werden. Bild 3.16 zeigt die Folge \(x[k] \) und die gespiegelte Folge \(x[-k] \).

![Bild 3.16: Darstellung der Folge \(x[k] \) und der an \(k = 0 \) gespiegelte Folge \(x[-k] \)](image)

Auch hier kann über den Folgenindex argumentiert werden. Die Folge \(x[k] \) weist an der Stelle \(k = 1 \) den Folgenwert \(x[1] = 7.6 \) auf. Die Folge \(x[-k] \) besitzt denselben Folgenwert an der Stelle \(k = -1 \).

Zeitliche Skalierung

Bei Signalfolgen kann eine Stauchung oder Dehnung des Signals nicht beliebig vorgenommen werden, da die dazu notwendigen Abtastwerte nicht vorliegen. Ohne zusätzliche Interpolationsschritte ist es bei der zeitlichen Skalierung nur möglich, ganzzahlige Faktoren \(a > 1 \) einzusetzen. Diese Skalierung führt zu einer Stauchung der Signalfolge. Bild 3.17 zeigt die Folge \(x[k] \) und die zeitlich skalierte Folge \(x[2 \cdot k] \).

![Bild 3.17: Darstellung der Folge \(x[k] \) und der gestauchten Signalfolge \(x[2 \cdot k] \)](image)

Wieder wird der Begriff der Stauchung am einfachsten deutlich, wenn über das Argument der Folge \(x[a \cdot k] \) argumentiert wird.
3.3.2 Überlagerung grundlegender Folgen

Bild 3.18: Darstellung einer Folge $x[k]$ als Summe grundlegender Folgen

Bei der Beschreibung der Folge $x[k]$ sind insbesondere die Stellen von Bedeutung, an denen sich die Steigung der Folge ändert. Aus Bild 3.18 kann abgelesen werden, dass das die Stellen 0, 2, 6, 8 und 10 sind.

An der Stelle $k = 0$ beginnt die Folge mit der Steigung 1. Die Folge $x_1[k]$, die dieses Verhalten beschreibt, lautet:

$$x_1[k] = k \cdot \sigma[k]$$ \hspace{1cm} (3.37)

An der Stelle $k = 2$ ändert sich die Steigung der Folge um -2. Der Faktor 2 ergibt sich dabei aus der Kompensation der vor dieser Stelle vorhandenen Steigung 1 und der nach der Stelle gewünschten Steigung -1. Zu der Folge $x_1[k]$ muss die Folge $x_2[k]$ addiert werden, die aber erst an der Stelle $k = 2$ einen Einfluss haben darf. Um die Folge für $k < 2$ auszublenden, wird die Sprungfolge verwendet.

$$x_2[k] = -2 \cdot (k - 2) \cdot \sigma[k - 2]$$ \hspace{1cm} (3.38)

Das Vorgehen wiederholt sich mit unterschiedlichen Steigungsänderungen an den Stellen 6, 8 und 10, und es ergeben sich die Folgen

$$x_3[k] = (k - 6) \cdot \sigma[k - 6]$$ \hspace{1cm} (3.39)

$$x_4[k] = (k - 8) \cdot \sigma[k - 8]$$ \hspace{1cm} (3.40)

$$x_5[k] = -(k - 10) \cdot \sigma[k - 10]$$ \hspace{1cm} (3.41)

Die Folge $x[k]$ kann damit als Überlagerung der Teilverfolgen $x_1[k]$ bis $x_5[k]$ dargestellt werden.

$$x[k] = k \cdot \sigma[k] - 2 \cdot (k - 2) \cdot \sigma[k - 2] + (k - 6) \cdot \sigma[k - 6]$$
$$+ (k - 8) \cdot \sigma[k - 8] - (k - 10) \cdot \sigma[k - 10]$$ \hspace{1cm} (3.42)
Durch den Einsatz der Sprungfolgen ist gewährleistet, dass die jeweilige Folge erst ab einem definier-
ten Zeitpunkt berücksichtigt wird. Sie ermöglicht damit die sequenzielle Synthese der Folge $x[k]$.

3.3.3 Zusammenfassung Rechenoperationen mit Folgen

Tabelle 3.4: Tabellarische Zusammenfassung der Rechenoperationen für Folgen

<table>
<thead>
<tr>
<th>Operation</th>
<th>Mathematische Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skalierung der Amplitude</td>
<td>$y[k] = a \cdot x[k]$</td>
</tr>
<tr>
<td>Verschiebung um k_0 nach rechts</td>
<td>$y[k] = x[k-k_0]$</td>
</tr>
<tr>
<td>Stauchung ($a > 1$ und ganzzahlig)</td>
<td>$y[k] = x[a \cdot k]$</td>
</tr>
<tr>
<td>Spiegelung</td>
<td>$y[k] = x[-k]$</td>
</tr>
<tr>
<td>Aktivieren an der Stelle k_0</td>
<td>$y[k] = x[k] \cdot \sigma[k-k_0]$</td>
</tr>
</tbody>
</table>

Im Online-Portal *Systemtheorie Online* verdeutlicht die Applikation Zeitdiskrete Signale und ihre Ableitung das Vorgehen grafisch. Es lassen sich unterschiedliche Signalfolgen definieren und überlagern. Die Signalfolgen werden abgeleitet und grafisch dargestellt.
3.4 Folgen zur Beschreibung von zeitdiskreten Einschwingvorgängen

Ausgangssignale zeitdiskreter Systeme lassen sich vielfach mit Hilfe von harmonischen Folgen und Exponentialfolgen beschreiben. Sie werden im Folgenden vorgestellt.

3.4.1 Periodische und harmonische Folgen

Periodische Folgen sind dadurch gekennzeichnet, dass sich der Folgenwert periodisch nach einem Intervall der Länge \(K \) wiederholt. Bild 3.19 zeigt eine einfache periodische Signalfolge:

Für periodische Folgen und ganzzahlige Werte \(n \) gilt:

\[
x[k] = x[k + n\cdot K]
\]

(3.43)

\[
x[k] = A \cdot \cos(\Omega_0 \cdot k + \varphi) = A \cdot \cos(\Omega_0 \cdot (k + k_0))
\]

(3.44)

wobei \(A \) die Amplitude der Schwingung, \(\varphi \) der Nullphasenwinkel und \(\Omega_0 \) die normierte Kreisfrequenz ist. Die Normierung wird in Kapitel 7.1.2 ausführlich diskutiert. Die normierte Kreisfrequenz ergibt sich aus dem Ansatz, dass die Folgenwerte \(x[k] \) an den Zeitpunkten \(k \cdot T_A \) mit der Funktion \(x(t) \) überestimmen sollen.

\[
x[k] = A \cdot \cos(\Omega_0 \cdot k + \varphi) = A \cdot \cos(\omega_0 \cdot k \cdot T_A + \varphi) = x(k \cdot T_A)
\]

(3.45)

Ein Vergleich der beiden Kosinusfunktionen führt zu einer Normierung der Kreisfrequenz mit der Abtastzeit \(T_A \).

\[
\Omega_0 = \omega_0 \cdot T_A
\]

(3.46)

Da der Folgenindex \(k \) im Gegensatz zu Zeit \(t \) dimensionslos ist, besitzt die normierte Kreisfrequenz die Einheit rad. Bild 3.20 verdeutlicht diese Definitionen an einem Beispiel:
Zeitdiskrete Signale

Bild 3.20: Kosinusfolge mit einer Periode $K = 10$, einer Amplitude von 5 und einem Nullphasenwinkel von $-\frac{2}{5} \pi$

In dem Beispiel beträgt die Amplitude 5. Die Kosinusfolge hat zwei aufeinanderfolgende Minima bei $k = -3$ und $k = 7$, woraus sich eine Periode von $K = 10$ und eine normierte Kreisfrequenz

$$\Omega = \frac{2 \cdot \pi}{10} \tag{3.47}$$

ergibt. Die Nullphase ϕ ist nicht unmittelbar aus dem Diagramm ablesbar. Sie wird über die Verschiebung k_0 berechnet:

$$k_0 = \frac{\phi}{2 \cdot \pi} \cdot 10 = -2 \tag{3.48}$$

Für das Beispiel ergibt sich damit der Nullphasenwinkel $\phi = -\frac{2}{5} \pi$.

Zeigerdarstellung von harmonischen Signalfolgen

In der Elektrotechnik hat sich für die Berechnung von harmonisch angeregten Schaltungen die Zeigerdarstellung durchgesetzt. Sie beruht auf der Eulerschen Formel.

$$e^{j \phi} = \cos(\phi) + j \cdot \sin(\phi) \tag{3.49}$$

Damit kann eine Kosinusfolge der Form

$$x[k] = A \cdot \cos(\Omega_0 \cdot k + \phi) \tag{3.50}$$

als Realteil einer komplexen Folge

$$z[k] = A \cdot e^{j(\Omega_0 k + \phi)} = A \cdot e^{j \phi} \cdot e^{i \Omega_0 k} = A \cdot \left(\cos(\Omega_0 \cdot k + \phi) + j \cdot \sin(\Omega_0 \cdot k + \phi) \right) \tag{3.51}$$

aufgefasst werden. Diese mathematische Darstellung kann durch einen Zeiger der Länge A verdeutlicht werden, der in der komplexen Ebene um den Koordinatenursprung rotiert. Die Zeit für eine volle Umdrehung ist die Periode K. Die eigentlich interessierende Größe ist die Projektion des Zeigers auf die reelle Achse, sie stellt die Folge $x[k]$ dar. Zum Zeitpunkt $k = 0$ gilt

$$z[0] = A \cdot e^{j \phi} = A \cdot \cos(\phi) + j \cdot A \cdot \sin(\phi) \tag{3.52}$$

Zur Verdeutlichung zeigt Bild 3.21 die Zeigerdarstellung in der komplexen Ebene.
Darstellung von Signalfolgen als Überlagerung komplexer Schwingungsfolgen

Durch Umformung der Eulerschen Formel ergibt sich für Kosinusfolgen die Darstellung

\[
\cos(\varphi) = \frac{1}{2} \left(e^{i\varphi} + e^{-i\varphi} \right) \tag{3.53}
\]

Damit lässt sich die Kosinusfolge darstellen als

\[
x[k] = A \cdot \cos(\Omega_0 \cdot k + \varphi) = \frac{A}{2} \left(e^{i(\Omega_0 k + \varphi)} + e^{-i(\Omega_0 k + \varphi)} \right) \tag{3.54}
\]

Der erste Summand beschreibt einen komplexen Zeiger, der sich in der komplexen Ebene mit einer normierten Kreisfrequenz \(\Omega_0\) in mathematisch positiver Richtung dreht. Der zweite Summand beschreibt einen zweiten komplexen Zeiger, der zu jedem Zeitpunkt konjugiert komplex zum Ersten ist. Er dreht sich mit derselben Winkelgeschwindigkeit wie der erste Zeiger, aber in entgegengesetzter Richtung.
Die komplexe Exponentialfolge stellt reelle Folgen mithilfe komplexer Zahlen dar. Es ist eine effiziente Beschreibungsform, die gleichermaßen Amplitude und Phase beschreibt. Physikalisch gesehen existieren komplexe Signale nicht.

Im Online-Portal *Systemtheorie Online* verdeutlicht die Applikation *Komplexe Exponentialfolge* die Darstellung von harmonischen Signalen mit Zeigern, die in der komplexen Ebene rotieren.

3.4.2 Exponentialfolge

Bei der Diskussion von zeitdiskreten Systemen wird sich zeigen, dass die Exponentialfolge

\[
x[k] = A \cdot r_0^k \cdot \sigma[k]
\]

(3.55)

die Einschwingvorgänge vieler linearer zeitdiskreter Systeme beschreibt. Bild 3.22 stellt das Verhalten der Exponentialfolge für unterschiedliche reelle Parameter \(r_0\) und \(k > 0\) dar:

Die Exponentialfolge beginnt für alle Parameter \(r_0\) an der Stelle \(x[0] = A\). Für reelle Parameter \(0 < r_0 < 1\) nähert sich die Exponentialfolge der Asymptote \(x = 0\). Für \(r_0 = 1\) bleibt die Exponentialfolge konstant bei \(x = A\). Für \(r_0 > 1\) steigt die Exponentialfolge mit wachsendem Folgenindex \(k\).

Mit Exponentialfolgen der Form \(e^{i\Omega_0 k}\) können harmonische Schwingungen beschrieben werden. Durch die Kombination beider Exponentialfolgen können Kosinusfolgen mit exponentiell abklingender Amplitude als Summe zweier Exponentialfolgen dargestellt werden.

\[
x[k] = A \cdot r_0^k \cdot \cos(\Omega_0 \cdot k) \cdot \sigma[k] = \frac{1}{2} \cdot A \cdot r_0^k \cdot \left(e^{i\Omega_0 k} + e^{-i\Omega_0 k} \right) \cdot \sigma[k]
\]

\[
= \frac{1}{2} \cdot A \cdot \left(r_0^k \cdot e^{i\Omega_0 k} + r_0^{-k} \cdot e^{-i\Omega_0 k} \right) \cdot \sigma[k] = \frac{1}{2} \cdot A \cdot \left(\lambda_0^k + \lambda_0^{-k} \right) \cdot \sigma[k]
\]

(3.56)

Die Kosinusfolge mit exponentiell abklingender Amplitude ist in Bild 3.23 dargestellt. Dabei sind die Einhüllenden der Kosinusfolge als gestrichelte Linie eingzeichnet.
Je nach Lage des Wertes $\lambda_0 = r_0 \cdot e^{j\Omega_0}$ in der komplexen Ebene ergeben sich ein charakteristisches Verhalten der komplexen Exponentialfolge. Bei der Diskussion von Systemeigenschaften linearer Systeme wird die Interpretation reeller und komplexer Exponentialfolgen weiter vertieft.

Im Online-Portal *Systemtheorie Online* verdeutlicht die Applikation *Komplexe Exponentialfolge* den Zusammenhang zwischen der Lage des Wertes $\lambda_0 = r_0 \cdot e^{j\Omega_0}$ in der komplexen Ebene und dem Verhalten der Schwingung.
3.4.3 Zusammenfassung zur Beschreibung von zeitdiskreten Einschwingvorgängen

Tabelle 3.5: Folgen zur Beschreibung von Einschwingvorgängen

<table>
<thead>
<tr>
<th>Folge</th>
<th>Mathematische Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Periodische Folge der Periodendauer K</td>
<td>$x[k] = x[k + n \cdot K]$</td>
</tr>
<tr>
<td>Harmonische Folge</td>
<td>$x[k] = A \cdot \cos(\Omega_0 \cdot k + \varphi) = A \cdot \cos(\Omega_0 \cdot (k + k_0))$</td>
</tr>
<tr>
<td>Eulersche Formel</td>
<td>$e^{j\varphi} = \cos(\varphi) + j \cdot \sin(\varphi)$</td>
</tr>
<tr>
<td>Darstellung der Kosinusfolge über die Eulersche Formel</td>
<td>$\cos(\Omega_0 \cdot k) = \frac{1}{2} \left(e^{j\Omega_0 k} + e^{-j\Omega_0 k} \right)$</td>
</tr>
<tr>
<td>Darstellung der Sinusfolge über die Eulersche Formel</td>
<td>$\sin(\Omega_0 \cdot k) = \frac{1}{2} j \left(e^{j\Omega_0 k} - e^{-j\Omega_0 k} \right)$</td>
</tr>
<tr>
<td>Exponentialfolge mit komplexem Argument</td>
<td>$\lambda^k = \left(r_0 \cdot e^{j\Omega_0} \right)^k = r_0^k \cdot e^{j\Omega_0 k}$</td>
</tr>
<tr>
<td>Beschreibung einer gedämpften Schwingungsfolge über eine Exponentialfolge mit komplexem Argument</td>
<td>$x[k] = A \cdot r_0^k \cdot \cos(\Omega_0 \cdot k) \cdot \sigma[k]$</td>
</tr>
<tr>
<td></td>
<td>$= \frac{1}{2} A \left((r_0 \cdot e^{j\Omega_0})^k + (r_0 \cdot e^{-j\Omega_0})^k \right) \cdot \sigma[k]$</td>
</tr>
<tr>
<td></td>
<td>$= \frac{1}{2} A \left(\lambda^k + \lambda^{-k} \right) \cdot \sigma[k]$</td>
</tr>
</tbody>
</table>
3.5 Projekt: Direct Digital Synthesis

3.5.1 Prinzip von Direct Digital Synthesis (DDS)

Generierung periodischer Signale unterschiedlicher Frequenz

Notwendigkeit eines Interpolationsalgorithmus

3.5.2 Simulation von Direct Digital Synthesis in MATLAB

3.5.3 Implementierung eines DDS auf eine Digitalen Signalprozessor

Algorithmus

Steuerung von MATLAB

3.5.4 Bewertung der Signalgüte
3.6 Literatur

3.6.1 Literaturstellen mit besonders anschaulicher Darstellung

3.6.2 Literaturstellen mit praktischen Anwendungen

3.6.3 Weiterführende Literatur

3.6.4 Literatur zum Projekt

[]
3.7 Übungsaufgaben – Zeitdiskrete Signale

3.7.1 Signalklassen
Gegeben sind die zeitdiskreten Signalfolgen $x_1[k] \ldots x_4[k]$:

a) Geben Sie eine mathematische Darstellung der zeitdiskreten Signale an.

b) Sind die Signalfolgen kausal?

c) In welchen Fällen handelt es sich um ein Energiesignal, in welchen Fällen um ein Leistungssignal? Begründen Sie Ihre Antwort mathematisch.

3.7.2 Gerader und ungerader Anteil von Folgen
Gegeben ist die zeitdiskrete Signalfolge $x[k]$ mit

$$x[k] = \sqrt{2} \cdot \sin\left(\frac{\pi \cdot (k + 1)}{4}\right).$$

a) Skizzieren Sie das angegebene Signal.

b) Besitzt das Signal Symmetrieigenschaften?

c) Bestimmen Sie den geraden und ungeraden Anteil des Signals.

Hinweis:

$$\sin(x) + \sin(y) = 2 \cdot \sin\left(\frac{x + y}{2}\right) \cdot \cos\left(\frac{x - y}{2}\right) \quad \cos(x) = \sin\left(x + \frac{\pi}{2}\right)$$
3.7.3 Diskrete Exponentialfolge

Durch regelmäßige Abtastung im Abstand $T_A = 1/4$ entsteht aus der Exponentialfunktion

$$x(t) = e^{(\delta + \omega t)} \cdot \sigma(t)$$

die Exponentialfolge

$$x[k] = (r_0 \cdot e^{i\omega_0})^k \cdot \sigma[k]$$

Führen Sie die folgenden Schritte getrennt für $\omega_1 = 2 \cdot \pi$ und $\omega_2 = 10 \cdot \pi$ sowie $\delta = \ln(1/4)$ durch.

a) Geben Sie Realteil $x_R(t)$ und Imaginärteil $x_I(t)$ an und skizzieren Sie $x_R(t)$ und $x_I(t)$.

b) Geben Sie r und $\Omega_{1,2}$ an und zeichnen Sie die Abtastwerte $x[k]$ in die Skizzen von $x(t)$ ein.

3.7.4 Parameter komplexer Exponentialfolgen

Die komplexe Exponentialfolge kann dargestellt werden als

$$x[k] = (r_0 \cdot e^{i\omega k})^k \cdot \sigma[k]$$

Gegeben sind vier Diagramme in der komplexen λ-Ebene, die zu kausalen Folgen $x_1[k]$ … $x_4[k]$ gehören.

b) Skizzieren Sie Ihre Ergebnisse.
3.7.5 Komplexe Exponentialfolgen

Bestimmen Sie den Betrag r_0 und die normierte Kreisfrequenz Ω_0 der folgenden komplexen Exponentialfolgen.

a) $x_1[k] = e^{2k \cdot \sigma[k]}$

b) $x_2[k] = 0.9^k \cdot \sigma[k]$

c) $x_3[k] = (-0.9)^k \cdot \sigma[k]$

d) $x_4[k] = \left(\frac{1+j}{2}\right)^k \cdot \sigma[k]$

3.7.6 Symmetrieigenschaften

Gegeben sind die zeitdiskreten Signalfolgen $x_1[k]$ und $x_2[k]$.

a) Welche Symmetrieigenschaften weisen die aufgeführten Signalfolgen auf?

b) Geben Sie eine mathematische Darstellung der Signalfolgen an und bestimmen Sie den geraden und ungeraden Anteil.
3.7.7 Rechnen mit Signalfolgen

Gegeben ist die zeitdiskrete Signalfolge \(x[k]\), die in folgendem Diagramm skizziert ist.

Skizzieren Sie die Signale \(y_1[k] \ldots y_5[k]\) mit

a) \(y_1[k] = x[k - 2]\)
b) \(y_2[k] = x[4 - k]\)
c) \(y_3[k] = x[2 \cdot k]\)
d) \(y_4[k] = x[2 \cdot k] \cdot \sigma[2 - k]\)
e) \(y_5[k] = x[k - 1] \cdot \delta[k - 3]\)

3.7.8 Überlagerung grundlegender Folgen

Gegeben sind die zeitdiskreten Signalfolgen \(x_1[k]\) und \(x_2[k]\):

a) Geben Sie eine mathematische Darstellung der beiden Signalfolgen an
b) Gegeben sei eine Rechteckfolge
 \(x_3[k] = \sigma[k + 1] - \sigma[k - 4]\)
 Skizzieren Sie die Rechteckfolge.
c) Gegeben sind die zeitdiskreten Signalfolgen \(x_4[k]\) und \(x_5[k]\), die in folgendem Diagramm dargestellt sind.
Stellen Sie die dargestellten Signale als Überlagerung von Impuls-, Sprung- und/oder Rampenfolgen dar. Skizzieren Sie diese separat und verifizieren Sie damit Ihre Ergebnisse.
3.8 Musterlösungen – Zeitdiskrete Signale

3.8.1 Signalklassen

a) Die vier Signalfolgen können dargestellt werden als

\[x_1[k] = \sigma[k-2] - \sigma[k-7] \]
\[x_2[k] = \cos\left(\frac{2 \cdot \pi \cdot k}{6}\right) \cdot \sigma[k] \]
\[x_3[k] = e^{\frac{k}{5}} \cos\left(\frac{2 \cdot \pi \cdot k}{6}\right) \cdot \sigma[k] \]
\[x_4[k] = \left(1 - e^{\frac{k}{5}}\right) \cdot \cos\left(\frac{2 \cdot \pi \cdot k}{6}\right) \cdot \sigma[k] \]

b) Für die dargestellten Signalfolgen gilt für \(k < 0 \):

\(x[k] = 0 \)

Damit handelt es sich in allen Fällen um kausale Signale.

c) Die Signalfolge \(x_1[k] \) ist sowohl von der Amplitude als auch von der Dauer begrenzt, es handelt sich deshalb bei \(x_1[k] \) um ein Energiesignal.

Bei der Folge \(x_2[k] \) handelt es sich um ein Leistungssignal, denn es gilt:

\[\lim_{K \to \infty} \frac{1}{K} \sum_{k=0}^{K} \left| x_2[k] \right|^2 = \lim_{K \to \infty} \frac{1}{K} \sum_{k=0}^{K} \left| \cos\left(\frac{2 \cdot \pi \cdot k}{6}\right) \cdot \sigma[k] \right|^2 = \frac{1}{2} \]

Bei \(x_3[k] \) handelt es sich um ein Energiesignal, denn es gilt:

\[\lim_{K \to \infty} \frac{1}{K} \sum_{k=0}^{K} \left| x_3[k] \right|^2 = \lim_{K \to \infty} \frac{1}{K} \sum_{k=0}^{K} \left| e^{\frac{k}{5}} \cos\left(\frac{2 \cdot \pi \cdot k}{6}\right) \cdot \sigma[k] \right|^2 = 0 \]

Bei \(x_4[k] \) handelt es sich um ein Leistungssignal, denn es gilt:

\[\lim_{K \to \infty} \frac{1}{K} \sum_{k=0}^{K} \left| x_4[k] \right|^2 = \lim_{K \to \infty} \frac{1}{K} \sum_{k=0}^{K} \left| \left(1 - e^{\frac{k}{5}}\right) \cdot \cos\left(\frac{2 \cdot \pi \cdot k}{6}\right) \cdot \sigma[k] \right|^2 = \frac{1}{2} \]

3.8.2 Gerader und ungerader Anteil von Folgen

a) Das folgende Bild stellt die Folge \(x[k] \) dar.

b) Die Abbildung zeigt, dass das Signal weder gerade noch ungerade ist. Um die fehlende Symmetrie mathematisch nachzuweisen, wird die Folge umgeformt zu
Eine Sinusfolge mit einer Phasenverschiebung von \(n \pi \) wäre eine ungerade Folge, eine Sinusfolge mit einer Phasenverschiebung von \((2n+1)\pi/2\) führt zu einer geraden Kosinusfolge. Bei einer Phasenverschiebung von \(\pi/4 \) liegt weder eine gerade, noch eine ungerade Symmetrie vor.

c) Um aus der gegebenen Sinusfolge mit Phase den geraden und ungeraden Anteil zu ermitteln, bietet es sich an die Folge als Kombination einer Sinus- und einer Kosinusfolge zu definieren. Mithilfe der angebotenen Korrespondenz zur Addition von Sinusfolgen lässt sich folgender Zusammenhang herstellen:

\[
x[k] = \sqrt{2} \cdot \sin\left(\frac{\pi \cdot (k+1)}{4}\right) = \sqrt{2} \cdot \sin\left(\frac{2 \cdot \pi \cdot k}{8} + \frac{\pi}{4}\right) = \sqrt{2} \cdot \sin\left(\omega_0 \cdot k + \frac{\pi}{4}\right)
\]

Der gerade Anteil und der ungerade Anteil ergeben sich damit zu

\[
x_g[k] = \cos\left(\omega_0 \cdot k\right)
\]

und

\[
x_u[k] = \sin\left(\omega_0 \cdot k\right)
\]

3.8.3 Diskrete Exponentialfolge

Zur Bestimmung von Real- und Imaginärteil wird \(x(t) \) zunächst umgeformt:

\[
x(t) = \left(e^{j\omega t} \right)^t \cdot e^{j\omega t} \cdot \sigma(t) = \left(\frac{1}{4} \right)^t \cdot \left(\cos(\omega_0 \cdot t) + j \cdot \sin(\omega_0 \cdot t) \right) \cdot \sigma(t) = x_n(t) + j \cdot x_i(t)
\]

Daraus ergibt sich für \(\omega_1 = 2 \cdot \pi \)

\[
x_i(t) = \left(\frac{1}{4} \right)^t \cdot \left(\cos(2 \cdot \pi \cdot t) + j \cdot \sin(2 \cdot \pi \cdot t) \right) \cdot \sigma(t) = x_{i1}(t) + j \cdot x_{i2}(t)
\]

und für \(\omega_2 = 10 \cdot \pi \)

\[
x_i(t) = \left(\frac{1}{4} \right)^t \cdot \left(\cos(10 \cdot \pi \cdot t) + j \cdot \sin(10 \cdot \pi \cdot t) \right) \cdot \sigma(t) = x_{i1}(t) + j \cdot x_{i2}(t)
\]

b) Das abgetastete Signal lässt sich über die Abtastfunktion
\[x_A(t) = \sum_{k=-\infty}^{\infty} e^{(\delta + j\omega_k)kT_A} \cdot \delta(t - k \cdot T_A) \]

oder als Zahlenfolge dargestellt werden.

\[x[k] = e^{(\delta + j\omega_k)kT_A} = e^{(\delta T_A + j\omega_k T_A)k} = r_0^k \cdot e^{j\Omega_0 k} \]

Daraus ergeben sich der Parameter \(r \) und die normierte Kreisfrequenz \(\Omega_0 = \omega_0 T_A \). Mit den Angaben der Aufgabenstellung ergibt sich

\[r_0 = e^{\frac{j\pi}{4}} = \frac{1}{\sqrt{2}} \]

\[\Omega_1 = 2 \cdot \pi \cdot \frac{1}{4} = \frac{\pi}{2} \]

\[\Omega_2 = 10 \cdot \pi \cdot \frac{1}{4} = \frac{5 \cdot \pi}{2} \]

Da die Frequenz \(\Omega_2 \) um \(2 \cdot \pi \) größer ist als \(\Omega_1 \), besitzen die beiden Folgen \(x_1[k] \) und \(x_2[k] \) dieselben Abtastwerte. Das wird in dem folgenden Diagramm deutlich.

3.8.4 Parameter komplexer Exponentialfolgen

Zu den vier Diagrammen gehören folgende Signalfolgen:

\[x_1[k] = \left(\frac{1}{4} \right)^k \cdot \cos(\pi \cdot k) \cdot \sigma[k] = \left(-\frac{1}{4} \right)^k \cdot \sigma[k] \]

\[x_2[k] = \left(\frac{1}{\sqrt{2}} \right)^k \cdot \cos \left(\arctan \left(\frac{0.5}{0.5} \right) \cdot k \right) \cdot \sigma[k] = \left(\frac{1}{\sqrt{2}} \right)^k \cdot \cos(0.7854 \cdot k) \cdot \sigma[k] \]

\[x_3[k] = \left(\frac{1}{2} \right)^k \cdot \cos \left(\frac{\pi}{2} \cdot k \right) \cdot \sigma[k] \]

\[x_4[k] = \sqrt{2} \cdot \cos \left(\arctan \left(\frac{-0.5}{0.5} \right) + \frac{\pi}{2} \right) \cdot k \right) \cdot \sigma[k] = \sqrt{2} \cdot \cos(2.3562 \cdot k) \cdot \sigma[k] \]

Die zugehörigen Signalfolgen sind in den folgenden Diagrammen dargestellt.
3.8.5 Komplexe Exponentialfolgen

Für die angegebenen Exponentialfolgen können über den Parameter r_0 und die normierte Kreisfrequenz Ω_0 angegeben werden zu

<table>
<thead>
<tr>
<th></th>
<th>Folge $x_i[k]$</th>
<th>Parameter r_0</th>
<th>normierte Kreisfrequenz Ω_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_1[k]$</td>
<td>$e^{-2} = 0.1353$</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>$x_2[k]$</td>
<td>0.9</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>$x_3[k]$</td>
<td>0.9</td>
<td>π</td>
<td></td>
</tr>
<tr>
<td>$x_4[k]$</td>
<td>$\frac{1}{\sqrt{2}}$</td>
<td>$\frac{\pi}{4}$</td>
<td></td>
</tr>
</tbody>
</table>
3.8.6 Symmetrieigenschaften

a) Anhand der dargestellten Diagramme kann abgelesen werden, dass die beiden Signale keine Symmetrie aufweisen.

b) Die Signalfolgex\(_1[k]\) kann dargestellt werden als

\[
x_{1}[k] = 2 \cdot \text{sign}[k] + \cos\left(\frac{2 \cdot \pi \cdot k}{10}\right)
\]

Die Signum-Funktion ist eine ungerade Funktion, die Kosinusfunktion eine gerade Funktion. Damit kann die Folge \(x_1[k]\) direkt in einen geraden Anteil

\[
x_{gg}[k] = \cos\left(\frac{2 \cdot \pi \cdot k}{10}\right)
\]

und einen ungeraden Anteil

\[
x_{ug}[k] = \text{sign}[k]
\]

zerlegt werden

Die Folge \(x_2[k]\) kann dargestellt werden als

\[
x_{2}[k] = \tanh\left(\frac{1}{5} \cdot k\right) + 1
\]

Auch in diesem Fall ergibt sich die Folge aus der Summe eines geraden Anteils

\[
x_{gg}[k] = 1
\]

und eines ungeraden Anteils

\[
x_{ug}[k] = \tanh\left(\frac{1}{5} \cdot k\right)
\]

3.8.7 Rechnen mit Signalfolgen

Die Folge \(y_1[k]\) entspricht der um \(k_0 = 2\) nach rechts verschobenen Folge \(x[k]\).

Die Folge \(y_2[k]\) kann dargestellt werden als

\[
y_{2}[k] = x[4 - k] = x[-(k - 4)]
\]

Die Folge muss demnach gespiegelt und um \(k_0 = 4\) nach rechts verschoben werden.

Die Folge \(y_3[k]\) entspricht der mit \(a = 2\) gestauchten Folge \(x[k]\).

Die Folge \(y_4[k]\) kann umgeformt werden zu

\[
y_{4}[k] = x[2 \cdot k] \cdot \sigma[2 - k] = y_{3}[k] \cdot \sigma[-(k - 2)]
\]

entspricht der Folge \(y_3[k]\), sie wird aber für \(k \geq 3\) auf null gesetzt. Da hier die Folge ohnehin null ist, sind \(y_3[k]\) und \(y_4[k]\) identisch.

Die Folge \(y_5[k]\) entspricht der um \(k_0 = 1\) nach rechts verschobenen Folge \(x[k]\) an der Stelle \(k = 3\).

Alle Folgen sind in dem folgenden Bild dargestellt.
3.8.8 Überlagerung grundlegender Folgen

a) Die Folge $x_1[k]$ ist eine harmonische Signalfolge, die zum Zeitpunkt $k_0 = 2$ beginnt und eine Periode von $K = 7$ hat. Ihre Amplitude ist eins. Damit lautet die Folge

$$x_1[k] = \sin \left(\frac{2 \cdot \pi \cdot k}{7} \right) \cdot \sigma[k - 3]$$

Die Folge $x_2[k]$ ist eine um $k_0 = 1$ nach rechts verschobene Impulsfolge der Periodendauer $K = 4$. Damit ergibt sich

$$x_2[k] = \sum_{n=-\infty}^{\infty} \delta[k - 1 - 4 \cdot n]$$

b) Die Rechteckfolge $x_3[k]$ ist in folgendem Diagramm dargestellt.
c) Die Folge $x_4[k]$ setzt sich aus folgenden Teilfolgen zusammen:

$$x_4[k] = \sigma[k-1] + 0.5 \cdot (k-2) \cdot \sigma[k-2] - 0.5 \cdot (k-6) \cdot \sigma[k-6] - 2 \cdot (k-9) \cdot \sigma[k-9] + 2 \cdot (k-11) \cdot \sigma[k-11] + 0.5 \cdot (k-13) \cdot \sigma[k-13] - 0.5 \cdot (k-15) \cdot \sigma[k-15]$$

Die Überlagerung der Teilfolgen zeigt das folgende Diagramm.

Die Folge $x_5[k]$ setzt sich aus folgenden Teilfolgen zusammen:

$$x_5[k] = 0.5 \cdot (k-1) \cdot \sigma[k-1] - (k-6) \cdot \sigma[k-6] + 0.5 \cdot (k-11) \cdot \sigma[k-11] - 1.5 \cdot \delta[k-4]$$

Die Überlagerung der Teilfolgen zeigt das folgende Diagramm.
4 Zeitdiskrete Systeme im Zeitbereich

Im zeitkontinuierlichen Bereich werden dynamische Systeme mit Differentialgleichungen beschrieben. Für zeitdiskrete Systeme geht die Differentiation in einen Differenzenquotienten über. Daraus resultiert die Beschreibung zeitdiskreter Systeme mit Differenzengleichungen.

4.1 Beschreibung zeitdiskreter Systeme mit Differenzengleichungen

4.1.1 Beispiele für zeitdiskrete Systeme

Beispiel: Rückgekoppeltes System

Bei vielen Geräten wird versucht, Filter mit Algorithmen zu implementieren, die wenig Rechenzeit und Speicherelemente benötigen. Eines der einfachsten Filter ergibt sich aus der Gleichung

\[y[k] = (1 - GF) \cdot u[k] + GF \cdot y[k-1] \quad (4.1) \]

Dabei gilt für den Gedächtnisfaktor GF die Bedingung \(0 < GF < 1 \). Das aktuelle Ausgangssignal ergibt sich aus dem aktuellen Eingangssignal und dem um einen Takt zurückliegenden Ausgangssignal. Für kleine Werte von GF folgt das Ausgangssignal dem Eingangssignal, für große Werte ändert sich das Ausgangssignal nur sehr langsam. Bild 4.1 zeigt diesen Zusammenhang für einen Sprung am Eingang.

Die Systemantworten erinnern an das Ausgangssignal eines Tiefpasses. Es wird sich zeigen, dass diese rekursive Form die digitale Approximation eines Tiefpasses erster Ordnung ist.

Beispiel: Gleitender Mittelwert

Zur Verringerung von Störeffekten kann der Mittelwert einiger aufeinanderfolgender Folgenwerte gebildet werden. Dieses Vorgehen wird als gleitende Mittelwertbildung bezeichnet. Zum Beispiel wird über die Gleichung

\[y[k] = \frac{1}{5}(u[k] + u[k-1] + u[k-2] + u[k-3] + u[k-4]) \quad (4.2) \]

ein gleitendes Mittelwertfilter mit 5 Abtastwerten beschrieben. Die Ausgangsfolge ist in diesem Fall nur von aktuellen und vergangenen Werten des Eingangssignals abhängig. Durch die Mittelwertbildung weist die Ausgangsfolge \(y[k] \) einerseits eine geringere Variation auf als die Eingangsfolge \(u[k] \). Durch die Bildung des Mittelwertes von fünf Abtastwerten erreicht das Signal andererseits später seinen Endwert. Beide Effekte sind in Bild 4.2 verdeutlicht.
4.1 Beschreibung zeitdiskreter Systeme mit Differenzengleichungen

Im Online-Portal Systemtheorie Online verdeutlicht die Applikation Zeitdiskrete Systeme die Wirkung eines rekursiven Tiefpass-Filters und eines Mittelwert-Filter auf ein verrauschtes Signal.

Die beiden vorangegangenen Beispiele sind Algorithmen, die zum Beispiel als Programm in einem Controller implementiert werden können. Ein weiteres Anwendungsfeld für zeitdiskrete Systeme sind Switched-Capacitor-Schaltungen.

Beispiel: Switched-Capacitor-Schaltung

Zu Beginn jeden Taktes wird der Kondensator \(C_A \) aufgeladen. Nach Umschalten des Schalters wird der Kondensator \(C_E \) mit dem Knoten A des Operationsverstärkers verbunden, der auf Ground-Potential liegt. Der Kondensator wird dabei entladen. Da der Operationsverstärker einen sehr großen Innenwiderstand besitzt, fließt die Ladung nicht über den Operationsverstärker ab, sondern zum Kondensator \(C_A \). Bei jedem Takt wird also dem Integrierer eine Ladung der Größe \(q_E[k] \) zugeführt.

\[
q_E[k] = u_E[k] \cdot C_E
\]

Die aktuelle Ladung im Kondensator \(C_A \) beträgt damit...
Die aktuelle Ladung \(q_A[k] = u_e[k] \cdot C_E + q_{a[k-1]} = -u_A[k] \cdot C_A \) ergibt sich aus der Ladung im Takt zuvor und der dazukommenden Ladung. Die Ladung wird damit aufsummiert. Das aktuelle Ausgangssignal ergibt sich zu

\[
 u_A[k] = -\frac{1}{C_A} \cdot q_A[k] = -\frac{1}{C_A} \cdot (u_e[k] \cdot C_E + q_{a[k-1]})
\]

(4.5)

Wegen des Minuszeichens ist das System ein invertierender Summierer.

Alle hier behandelten Beispiele führen auf eine Differenzengleichung, die in allgemeiner Form geschrieben werden kann als

\[
c_0 \cdot y[k] + c_1 \cdot y[k-1] + \ldots + c_n \cdot y[k-N] = d_0 \cdot u[k] + d_1 \cdot u[k-1] + \ldots + d_M \cdot u[k-M]
\]

(4.6)

Die Lösung dieser Differenzengleichung ist Gegenstand des Abschnitts 4.3.

4.1.2 Zeitdiskrete Approximation zeitkontinuierlicher Systeme

Aus einem Vergleich der Flächen unter der Funktion \(u(t) \) ergibt sich der Ausdruck

\[
\int_{(k-1) \cdot T_A}^{k \cdot T_A} u(t) \, dt = \frac{1}{2} \cdot (u[k] + u[k-1]) \cdot T_A
\]

(4.7)

Die Approximation der Integration führt zu der gewichteten Summe aufeinanderfolgender Abtastwerte, die mit dem Faktor \(T_A \) multipliziert wird. Für Integrale höherer Ordnung kann entsprechend verfahren werden. Es ergibt sich eine Summe von Folgenwerten, die jeweils um einen Abtastwert verschoben sind. Allgemein ist das aktuelle Ausgangssignal eine Funktion der vergangenen Ein- und Ausgangswerte und des aktuellen Eingangssignals.
Die Beschreibung linearer, zeitinvarianter Systeme führt zu linearen Differenzengleichungen mit konstanten Koeffizienten, die allgemein dargestellt werden können als

\[\sum_{n=0}^{N} c_n \cdot y[k-n] = \sum_{m=0}^{M} d_m \cdot u[k-m] \] \hspace{1cm} (4.9)

beziehungsweise mit \(c_0 = 1 \)

\[y[k] = \sum_{m=0}^{M} d_m \cdot u[k-m] - \sum_{n=1}^{N} c_n \cdot y[k-n] \] \hspace{1cm} (4.10)

Die Güte der Approximation verbessert sich mit sinkender Abtastzeit \(T_A \). Allerdings ist die Abtastzeit aus der Anwendung vorgegeben. Auch der Signalverlauf hat einen Einfluss auf die Approximationsgüte. Nichtlineare Kurvenverläufe und hochfrequente Signalanteile wirken sich negativ auf die Approximationsgüte aus.

Beispiel: RC-Tiefpass

Bild 3.1 zeigt einen RC-Tiefpass mit Spannungsquelle \(u_E \), Widerstand \(R \) und Kapazität \(C \).

Die zugehörige lineare Differentialgleichung für die Ausgangsspannung \(u_A(t) \) lautet:

\[u_A(t) + R \cdot C \cdot \frac{du_A}{dt} = u_E(t) \] \hspace{1cm} (4.11)

Eine Integration der Differentialgleichung führt bei zeitdiskreten Integrationsgrenzen zu

\[\int_{(k-1)T_A}^{kT_A} u_A(t) \, dt + R \cdot C \cdot \left(u_A(k \cdot T_A) - u_A((k-1) \cdot T_A) \right) = \int_{(k-1)T_A}^{kT_A} u_A(t) \, dt \] \hspace{1cm} (4.12)

Mit den Signalen

\[u_E(k \cdot T_A) = u_E[k] \] \hspace{1cm} (4.13)

und

\[u_A(k \cdot T_A) = u_A[k] \] \hspace{1cm} (4.14)

und einer Approximation der Integrale über die Trapezregel ergibt sich
\[
\frac{1}{2} \cdot (u_A[k] + u_A[k-1]) \cdot T_A + R \cdot C \cdot (u_A[k] - u_A[k-1]) = \frac{1}{2} \cdot (u_E[k] + u_E[k-1]) \cdot T_A
\]
(4.15)

Zur Berechnung des aktuellen Ausgangssignals wird die Gleichung ausmultipliziert und nach \(u_A[k] \) aufgelöst.

\[
u_A[k] = \frac{T_A \cdot u_E[k] + T_A \cdot u_E[k-1] - T_A \cdot u_A[k-1] + 2 \cdot R \cdot C \cdot u_A[k-1]}{T_A + 2 \cdot R \cdot C}
\]
(4.16)

Die aktuelle Ausgangsspannung \(u_A[k] \) berechnet sich aus dem aktuellen und einem vergangenen Wert der Eingangsspannung \(u_E[k] \) und einem vergangenen Wert der Ausgangsspannung \(u_A[k] \). Bild 4.6 zeigt den Vergleich zwischen dem zeitkontinuierlichen und dem zeitdiskreten System bei unterschiedlichen Abtastzeiten.

Bild 4.6: Vergleich zwischen zeitkontinuierlicher und zeitdiskreter Realisierung eines Tiefpasses (R \cdot C = 100 \mu s)

Die Abtastzeit von \(T_A = 10 \mu s \) ist deutlich kleiner als die Zeitkonstante des Systems mit \(T = 100 \mu s \). Aus diesem Grund ist die Approximationsgüte im links dargestellten Fall hoch. Die im rechten Bildteil diskutierte Abtastzeit von \(T_A = 100 \mu s \) entspricht der Zeitkonstante des Systems. Aus diesem Grund ist die Approximation der Ableitung mit einem Differenzenquotienten unzureichend, die Approximationsgüte ist deutlich schlechter als bei einer Abtastzeit von \(T_A = 10 \mu s \). Das Beispiel zeigt, dass zeitkontinuierliche Systeme zeitdiskret nachgebildet werden können. Die lineare Differentialgleichung erster Ordnung

\[
u_A(t) + R \cdot C \frac{du_A}{dt} = u_E(t)
\]
(4.17)

geht dabei über in eine lineare Differenzengleichung erster Ordnung,

\[(T_A + 2 \cdot R \cdot C) \cdot u_A[k] + (T_A - 2 \cdot R \cdot C) \cdot u_A[k-1] = T_A \cdot u_E[k] + T_A \cdot u_E[k-1]
\]
(4.18)

Die hier diskutierten Beispiele führen auf lineare Differenzengleichungen mit konstanten Koeffizienten.

\[c_0 \cdot y[k] + c_1 \cdot y[k-1] + \ldots + c_n \cdot y[k-N] = d_0 \cdot u[k] + d_1 \cdot u[k-1] + \ldots + d_M \cdot u[k-M]
\]
(4.19)

Im Folgenden werden die Eigenschaften von Systemen diskutiert, die sich mit dieser Art von Differenzengleichungen beschreiben lassen.
4.2 Grundlegende Systemeigenschaften

4.2.1 Linearität

Für den Linearitätsnachweis eines Systems müssen die Systemantworten $y_1[k]$ und $y_2[k]$ auf die Eingangssignale $u_1[k]$ und $u_2[k]$ bekannt sein. Ein System ist linear, wenn es auf eine Linearkombination von Eingangssignalen

$$u[k] = v_1 \cdot u_1[k] + v_2 \cdot u_2[k]$$ \hspace{1cm} (4.20)

mit derselben Linearkombination der entsprechenden Ausgangssignale reagiert.

$$y[k] = v_1 \cdot y_1[k] + v_2 \cdot y_2[k]$$ \hspace{1cm} (4.21)

Der Nachweis erfolgt über Einsetzen der Gleichungen in die Differenzengleichung.

Beispiel: Linearität eines rückgekoppelten Systems

Das Filter mit der Differenzengleichung

$$y[k] = (1 - GF) \cdot u[k] + GF \cdot y[k - 1]$$ \hspace{1cm} (4.22)

soll auf Linearität untersucht werden. Die Systemantworten $y_1[k]$ und $y_2[k]$ berechnen sich mit der Differenzengleichung zu

$$y_1[k] = (1 - GF) \cdot u_1[k] + GF \cdot y_1[k - 1]$$ \hspace{1cm} (4.23)

beziehungsweise

$$y_2[k] = (1 - GF) \cdot u_2[k] + GF \cdot y_2[k - 1]$$ \hspace{1cm} (4.24)

Wird das System mit der oben beschriebenen Linearkombination angeregt, ergibt sich das Ausgangssignal $y[k]$ aus derselben Linearkombination wie die Eingangssignale.

$$y[k] = (1 - GF) \cdot u[k] + GF \cdot y[k - 1]$$

$$= (1 - GF) \cdot (v_1 \cdot u_1[k] + v_2 \cdot u_2[k]) + GF \cdot (v_1 \cdot y_1[k - 1] + v_2 \cdot y_2[k - 1])$$

$$= (1 - GF) \cdot v_1 \cdot u_1[k] + (1 - GF) \cdot v_2 \cdot u_2[k] + GF \cdot v_1 \cdot y_1[k - 1] + GF \cdot v_2 \cdot y_2[k - 1]$$

$$= v_1 \cdot (1 - GF) \cdot u_1[k] + v_2 \cdot GF \cdot y_1[k - 1] + v_2 \cdot (1 - GF) \cdot u_2[k] + v_2 \cdot GF \cdot y_2[k - 1]$$

$$= v_1 \cdot y_1[k] + v_2 \cdot y_2[k]$$

Bild 4.7 zeigt Ein- und Ausgangssignale eines linearen Systems, das mit den Signalen $u_1[k]$, $u_2[k]$ und $u[k] = u_1[k] + u_2[k]$ angeregt wird.
Auch das Ausgangssignal $y[k]$ setzt sich aus der Summe der Ausgangsignale $y_1[k]$ und $y_2[k]$ zusammen.

4.2.2 Zeitinvarianz

Ein System reagiert auf ein Eingangssignal $u[k]$ mit einer Systemantwort $y[k]$. Ist das System zeitinvariant, so reagiert das System auf das verzögerte Eingangssignal $u[k - k_0]$ mit dem Ausgangssignal $y[k - k_0]$. Zeitinvariante Systeme reagieren also unabhängig vom Startzeitpunkt der Beobachtung auf gleiche Eingangssignale mit gleichen Ausgangssignalen.

Beispiel: Zeitinvarianz eines rückgekoppelten Systems

Das Filter mit der Differenzengleichung

$$y[k] = (1 - GF) \cdot u[k] + GF \cdot y[k - 1]$$ \hspace{1cm} (4.26)

soll auf Zeitinvarianz untersucht werden. Dazu werden alle Ausdrücke k durch $k - k_0$ ersetzt. Es ergibt sich die Differenzengleichung

$$y[k - k_0] = (1 - GF) \cdot u[k - k_0] + GF \cdot y[k - k_0 - 1]$$ \hspace{1cm} (4.27)

Wird das Eingangssignal um k_0 verschoben, wird auch das Ausgangssignal um k_0 verschoben.
Es kann gezeigt werden, dass zeitinvariante Systeme Differenzengleichungen mit konstanten Koeffizienten aufweisen. Ändern sich die Koeffizienten der Differenzengleichung mit dem Folgenindex k, ist das System zeitvariant.

4.2.3 Lineare, zeitinvariante Systeme (LTI-Systeme)

Systeme, die mit einer linearen Differenzengleichung mit konstanten Koeffizienten beschrieben werden können, erfüllen die Bedingungen nach Linearität und Zeitinvarianz. Ausgehend von der Differenzengleichung

$$\sum_{n=0}^{N} c_n \cdot y[k - n] = \sum_{m=0}^{M} d_m \cdot u[k - m]$$ \hspace{1cm} (4.28)

werden die Eigenschaften der Linearität und Zeitinvarianz hergeleitet.

Linearität

Ausgangspunkt für den Beweis der Linearität sind zwei Signalkombinationen $u_1[k]$ und $y_1[k]$ sowie $u_2[k]$ und $y_2[k]$, für die gilt

$$\sum_{n=0}^{N} c_n \cdot y_1[k - n] = \sum_{m=0}^{M} d_m \cdot u_1[k - m]$$ \hspace{1cm} (4.29)

$$\sum_{n=0}^{N} c_n \cdot y_2[k - n] = \sum_{m=0}^{M} d_m \cdot u_2[k - m]$$ \hspace{1cm} (4.30)

Für eine beliebige Linearkombination

$$u[k] = v_1 \cdot u_1[k] + v_2 \cdot u_2[k]$$ \hspace{1cm} (4.31)
gilt dann die Gleichung

\[\sum_{m=0}^{M} d_m \cdot u[k-m] = \sum_{m=0}^{M} d_m \cdot v_1 \cdot u_1[k-m] + d_m \cdot v_2 \cdot u_2[k-m] \]

\[= v_1 \cdot \sum_{m=0}^{M} d_m \cdot u_1[k-m] + v_2 \cdot \sum_{m=0}^{M} d_m \cdot u_2[k-m] \]

(4.32)

Für jede der beiden Summen kann der Ausdruck aus (4.29) beziehungsweise (4.30) eingesetzt werden, und es ergibt sich

\[\sum_{m=0}^{M} d_m \cdot u[k-m] = v_1 \cdot \sum_{n=0}^{N} c_n \cdot y_1[k-n] + v_2 \cdot \sum_{n=0}^{N} c_n \cdot y_2[k-n] \]

\[= \sum_{n=0}^{N} c_n \cdot (v_1 \cdot y_1[k-n] + v_2 \cdot y_2[k-n]) \]

(4.33)

Eine Linearkombination von Eingangssignalen führt damit zu der identischen Linearkombination von Ausgangssignalen, sodass das System ein lineares System ist.

Zeitinvarianz

Wie oben bereits beschrieben sind lineare Differenzengleichungen mit konstanten Koeffizienten stets zeitinvariant. Wird in der Differenzengleichung

\[\sum_{m=0}^{M} d_m \cdot u[k-m] = v_1 \cdot \sum_{n=0}^{N} c_n \cdot y_1[k-n] + v_2 \cdot \sum_{n=0}^{N} c_n \cdot y_2[k-n] \]

(4.34)

der Folgenindex sowohl bei Eingangs- als auch Ausgangssignalen um \(k_0 \) verschoben, bleibt die Differenzengleichung weiter gültig.

\[\sum_{n=0}^{N} c_n \cdot y[k - k_0 - n] = \sum_{m=0}^{M} d_m \cdot u[k - k_0 - m] \]

(4.35)

4.2.4 Kausalität

Wesentliche Voraussetzung für die Realisierbarkeit eines Systems ist die Forderung, dass die Werte der Ausgangssignale zu einem gegebenen Zeitpunkt nur von Werten der Eingangssignale zu diesem oder einem früheren Zeitpunkt abhängen, nicht jedoch etwa von zukünftigen Werten. Dieses Verhalten wird für zeitkontinuierliche Systeme als die Eigenschaft der Kausalität eines Systems definiert, die auch im diskreten Fall wesentlich ist. Liegt eine Systembeschreibung über eine Differenzengleichung vor, kann die Kausalität direkt bewertet werden.

\[\sum_{n=0}^{N} c_n \cdot y[k-n] = \sum_{m=0}^{M} d_m \cdot u[k-m] \]

(4.36)

Ist der Koeffizient \(c_0 \neq 0 \), kann ohne Beschränkung der Allgemeinheit die Annahme \(c_0 = 1 \) getroffen werden. Ist das nicht der Fall, wird die Gleichung durch \(c_0 \) dividiert. Mit dieser Annahme kann die Differenzengleichung nach \(y[k] \) aufgelöst werden, und es ergibt sich
4.2 Grundlegende Systemeigenschaften

\[y[k] = \sum_{m=0}^{M} d_m \cdot u[k-m] - \sum_{n=1}^{N} c_n \cdot y[k-n] \]

(4.37)

Da alle Indizes \(m \) und \(n \) größer gleich null sind, ist ein System, das durch eine lineare Differenzengleichung der Form aus Gleichung (4.37) beschrieben werden kann, ein kausales System. Ist in der Differenzengleichung (4.36) der Koeffizient \(c_0 = 0 \), kann nicht nach \(y[k] \) aufgelöst werden. Wird nach \(y[k - 1] \) aufgelöst, ergibt sich die Gleichung

\[y[k-1] = \frac{1}{c_1} \left(\sum_{m=0}^{M} d_m \cdot u[k-m] - \sum_{n=2}^{N} c_n \cdot y[k-n] \right) \]

(4.38)

Damit ist der Ausgangswert \(y[k - 1] \) von dem zukünftigen Eingangswert \(u[k] \) abhängig. Das System ist demnach für \(c_0 = 0 \) nicht kausal.

Beispiel: Kausalität des gleitenden Mittelwertes

Bei der Beschreibung zeitdiskreter Systeme wird der gleitende Mittelwert vorgestellt. Er hat die Differenzengleichung

\[y_1[k] = \frac{1}{5} \left(u[k] + u[k-1] + u[k-2] + u[k-3] + u[k-4] \right) \]

(4.39)

Weil das Ausgangssignal \(y[k] \) nur von aktuellen und vergangenen Eingangswerten abhängt, ist das System kausal. Es weist aber eine zeitliche Verzögerung auf, die bei der Berechnung von Frequenzgängen noch dargestellt wird. Ein System mit der Differenzengleichung

\[y_2[k] = \frac{1}{5} \left(u[k+2] + u[k+1] + u[k] + u[k-1] + u[k-2] \right) \]

(4.40)

Es ist deutlich zu erkennen, dass das nicht kausale System reagiert, bevor der Sprung des Eingangssignals stattgefunden hat, während das kausale Signal erst nach der eigentlichen Anregung reagiert.

4.2.5 Stabilität

Wie bei zeitkontinuierlichen Systemen erfolgt der Nachweis im Zeitbereich über die charakteristische Gleichung (Kapitel 4.3.3) oder die Impulsantwort (Kapitel 4.4.4). Alternativ kann die Stabilität mit der z-Transformation bewertet werden (Kapitel 6.3).

Beispiel: Stabiles, grenzstables und instabiles System

Als Beispiele werden rekursive Systeme untersucht. Das erste System hat die Differenzengleichung

\[
y_1[k] = 10 \cdot u[k] + \frac{1}{2} \cdot y_1[k-1]
\]

Wird die Anregung \(u[k] \) nach einer endlichen Zeit zu null, wird der Wert \(y_1[k] \) nur halb so groß wie der Wert \(y_1[k-1] \) im Takt zuvor. Aus diesem Grund konvergiert \(y_1[k] \) für \(k \to \infty \) gegen null. Das System ist asymptotisch stabil. Das zweite System wird über die Differenzengleichung

\[
y_2[k] = 2 \cdot u[k] + y_2[k-1]
\]

beschrieben. Wird die Anregung \(u[k] \) zu null, bleibt der Wert \(y_2[k] \) genauso so groß wie der Wert \(y[k-1] \) im Takt zuvor. Aus diesem Grund ist \(y_2[k] \) für \(k \to \infty \) konstant. Das System ist grenzstabil. Das dritte System wird durch die Gleichung
4.2 Grundlegende Systemeigenschaften

\[y_2[k] = \frac{1}{2} \cdot u[k] + \frac{11}{10} \cdot y_2[k - 1] \]
(4.43)

\[u[k] = \sigma[k] - \sigma[k - 10] \]
(4.44)

angeregt, die eine endliche Energie aufweist.

Bild 4.10: Sprungantwort eines asymptotisch stabilen, grenzstabilen und instabilen Systems

Bei dem asymptotisch stabilen System klingt die Systemantwort ab, wenn das Eingangssignal zu null wird. Bei dem grenzstabilen System bleibt die Systemantwort konstant, wenn die Anregung zu null wird. Bei dem instabilen System wächst das Ausgangssignal stetig an, auch nachdem die Anregung zu null wird.

4.2.6 Zusammenfassung grundlegender Systemeigenschaften

Tabelle 4.1 fasst die diskutierten Systemeigenschaften und ihre Bedeutung zusammen.

Tabelle 4.1: Zusammenfassung von Systemeigenschaften

<table>
<thead>
<tr>
<th>Eigenschaft</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linearität</td>
<td>System reagiert auf Linearkombination von Eingangssignalen</td>
</tr>
<tr>
<td></td>
<td>(x[k] = v_1 \cdot u_1[k] + v_2 \cdot u_2[k])</td>
</tr>
<tr>
<td></td>
<td>mit derselben Linearkombination von Ausgangssignalen</td>
</tr>
<tr>
<td></td>
<td>(y[k] = v_1 \cdot y_1[k] + v_2 \cdot y_2[k])</td>
</tr>
<tr>
<td>Zeitinvarianz</td>
<td>System reagiert auf ein verzögertes Eingangssignal (u[k - k_0])</td>
</tr>
<tr>
<td></td>
<td>mit einem Ausgangssignal (y[k - k_0])</td>
</tr>
<tr>
<td>Kausalität</td>
<td>System reagiert auf ein Eingangssignal erst nach Beginn der Anregung (c_0 \neq 0)</td>
</tr>
<tr>
<td>Asymptotische Stabilität</td>
<td>System erreicht nach einer Anregung mit endlicher Energie wieder seine Ruheposition</td>
</tr>
<tr>
<td>Grenzstabilität</td>
<td>System bleibt nach einer Anregung in der aktuellen Position</td>
</tr>
<tr>
<td>Instabilität</td>
<td>System reagiert nach einer Anregung mit endlicher Energie mit einer divergierenden Systemantwort</td>
</tr>
</tbody>
</table>
4.3 Lösung linearer Differenzengleichungen mit konstanten Koeffizienten

4.3.1 Rekursive Darstellung von Differenzengleichungen

Die Differenzengleichung N-ter Ordnung mit konstanten Koeffizienten lautet in ihrer allgemeinen Form

\[\sum_{n=0}^{N} c_n \cdot y[k-n] = \sum_{m=0}^{M} d_m \cdot u[k-m] \] (4.45)

Ohne Beschränkung der Allgemeinheit wird die Annahme \(c_0 = 1 \) getroffen. Mit dieser Annahme kann die Gleichung umgeformt werden zu

\[y[k] = \sum_{m=0}^{M} d_m \cdot u[k-m] - \sum_{n=1}^{N} c_n \cdot y[k-n] \] (4.46)

4.3.2 Explizite Lösung über die Vier-Schritt-Methode

Für die Diskussion von Systemeigenschaften ist es notwendig, eine geschlossene Darstellung des Ausgangssignals zu erhalten. Für die Lösung von linearen Differenzengleichungen mit konstanten Koeffizienten gibt es eine sogenannte Vier-Schritt-Methode. Sie besteht aus den Schritten

- Berechnung der allgemeinen homogenen Lösung
- Berechnung einer partikulären Lösung
- Kombination von homogener und partikulärer Lösung
- Bestimmung der Konstanten über Anfangsbedingungen
Berechnung der allgemeinen homogenen Lösung

Zur Berechnung der allgemeinen homogenen Lösung wird das Eingangssignal auf null gesetzt. Es ergibt sich die homogene Differenzengleichung

\[y_h[k] + \sum_{n=1}^{N} c_n \cdot y_h[k-n] = 0 \] \hspace{1cm} (4.47)

Mit dem Ansatz

\[y_h[k] = Y_0 \cdot \lambda^k \] \hspace{1cm} (4.48)

cann die homogene Lösung gefunden werden. Einsetzen des Ansatzes führt zu der Gleichung

\[Y_0 \cdot \lambda^k + \sum_{n=1}^{N} c_n \cdot Y_0 \cdot \lambda^{k-n} = 0 \] \hspace{1cm} (4.49)

beziehungsweise

\[\lambda^k + \sum_{n=1}^{N} c_n \cdot \lambda^{k-n} = 0 \] \hspace{1cm} (4.50)

Sie wird als charakteristische Gleichung bezeichnet, weil mit ihr die für das System charakteristischen Parameter \(\lambda_n \) bestimmt werden. Da es sich bei dem System um ein lineares System handelt, ergibt sich die allgemeine homogene Lösung aus der Linearkombination der berechneten Nullstellen \(\lambda_n \).

\[y_h[k] = Y_1 \cdot \lambda_1^k + Y_2 \cdot \lambda_2^k + \ldots + Y_N \cdot \lambda_N^k \] \hspace{1cm} (4.51)

Die Lösungen der charakteristischen Gleichung müssen jedoch nicht die Vielfachheit von eins haben. Existiert ein \(N_1 \)-facher Wert \(\lambda_1 \), ergibt sich die allgemeine homogene Lösung

\[y_h[k] = Y_1 \cdot \lambda_1^k + Y_2 \cdot \lambda_1^k \cdot k + \ldots + Y_{N_1} \cdot \lambda_1^{k^{N_1-1}} \cdot \lambda_1 + Y_{N_1+1} \cdot \lambda_2^k + \ldots + Y_N \cdot \lambda_{N-N_1}^k \] \hspace{1cm} (4.52)

Beispiel: Sprungantwort eines Tiefpasses - Berechnung der allgemeinen homogenen Lösung

Das praktische Vorgehen wird am Beispiel des rekursiven Tiefpasses dargestellt. Es soll die Systemreaktion auf einen Sprung am Eingang des Filters berechnet werden. Die Differenzengleichung für den Filter lautet nach Gleichung (4.1)

\[y[k] = (1-G\text{F}) \cdot u[k] + G\text{F} \cdot y[k-1] \] \hspace{1cm} (4.53)

Für die allgemeine homogene Lösung muss das Eingangssignal \(u[k] \) zu null gesetzt werden.

\[y_h[k] - G\text{F} \cdot y_h[k-1] = 0 \] \hspace{1cm} (4.54)

Mit dem Ansatz

\[y_h[k] = Y_0 \cdot \lambda^k \] \hspace{1cm} (4.55)

ergibt sich
4.3 Lösung linearer Differenzengleichungen mit konstanten Koeffizienten

\[\lambda^k - GF \cdot \lambda^{k-1} = 0 \]

(4.56)

Die Gleichung ist zum einen für \(\lambda = 0 \) erfüllt. Diese triviale Lösung beschreibt aber das Ausgangssignal, das zu allen Zeiten null ist. Es ist deshalb nicht von Interesse. Die von null verschiedene Nullstelle dieser Gleichung ergibt sich zu

\[\lambda = GF \]

(4.57)

Die allgemeine homogene Lösung ergibt sich als Linearkombination der berechneten Lösungen und lautet

\[y_h[k] = Y_0 \cdot GF^k \]

(4.58)

Die Konstante \(Y_0 \) wird in Schritt 4 durch Anfangsbedingungen festgelegt.

Berechnung einer partikulären Lösung

Im nächsten Schritt muss eine partikuläre Lösung der Differenzengleichung

\[y_p[k] + \sum_{n=1}^{N} c_n \cdot y_p[k-n] = \sum_{m=0}^{M} d_m \cdot u[k-m] \]

(4.59)

bestimmt werden. Als Ansatz für \(y_p[k] \) wird ein Signal verwendet, das in Abhängigkeit vom Eingangssignal gewählt wird.

<table>
<thead>
<tr>
<th>Eingangssignal (u[k])</th>
<th>Ansatz für die partikuläre Lösung (y_p[k])</th>
</tr>
</thead>
<tbody>
<tr>
<td>Konstante</td>
<td>Konstante</td>
</tr>
<tr>
<td>Polynom</td>
<td>Polynom gleichen Grades</td>
</tr>
<tr>
<td>Exponentialfolge (u_0^k)</td>
<td>Exponentialfolge (k \cdot u_0^k)</td>
</tr>
<tr>
<td>Harmonische Schwingung (\cos(\Omega k))</td>
<td>(A \cdot \cos(\Omega k + \varphi))</td>
</tr>
</tbody>
</table>

Durch Einsetzen dieses Ansatzes in die Differenzengleichung ergibt sich eine partikuläre Lösung \(y_p[k] \). Ist das Eingangssignal \(u[k] \) eine Kombination der dargestellten Eingangssignale, muss als Ansatz für die partikuläre Lösung eine entsprechende Kombination von Ansätzen gewählt werden. Dabei ist es ausreichend, eine beliebige partikuläre Lösung zu finden.

Alternativ kann die partikuläre Lösung durch eine Variation der Konstanten durchgeführt werden. Dabei werden die Konstanten \(Y_0 \) ... \(Y_N \) der allgemeinen homogenen Lösung als Funktion des Index \(k \) variert. Auflösen nach den varierten Konstanten \(Y_n(k) \) führt zu der gesuchten partikulären Lösung.

Beispiel: Sprungantwort eines Tiefpasses - Berechnung einer partikulären Lösung

Für das Beispiel des rekursiven Tiefpass-Filters wird die partikuläre Lösung über Variation der Konstanten bestimmt. Der Ansatz für die partikuläre Lösung lautet
\[y_p[k] = Y_0(k) \cdot GF^k \] (4.60)

Einsetzen in die inhomogene Differentialgleichung führt unter Berücksichtigung des Eingangssignals
\[u[k] = \sigma[k] \] (4.61)
zu
\[Y_0(k) \cdot GF^k - GF \cdot Y_0(k-1) \cdot GF^{k-1} = (1 - GF) \cdot \sigma[k] \] (4.62)

Damit kann der Koeffizient \(Y_0(k) \) rekursiv beschrieben werden als
\[Y_0(k) = Y_0(k-1) + \frac{(1 - GF)}{GF} \cdot \sigma[k] \] (4.63)

Da nur eine beliebige partikuläre Lösung erforderlich ist, kann \(Y_0(-1) = 0 \) gesetzt werden. Damit sind auch alle Konstanten \(Y_0(k) \) mit \(k < 1 \) null. Für \(k > -1 \) ergibt sich
\[Y_0(0) = (1 - GF) \] (4.64)
\[Y_0(1) = (1 - GF) + \frac{(1 - GF)}{GF} \] (4.65)

Eine wiederholte Berechnung führt auf \(Y_0(k) \)
\[Y_0(k) = \left(1 + \frac{1}{GF} + \left(\frac{1}{GF} \right)^2 + \ldots + \left(\frac{1}{GF} \right)^k \right) \cdot (1 - GF) \cdot \sigma[k] \] (4.66)

Mit der Summenformel für die endliche geometrische Reihe ergibt sich wegen der Definition des Gedächtnisfaktors mit \(|GF| < 1 \)
\[Y_0(k) = \left(\frac{1 - \left(\frac{1}{GF} \right)^{k+1}}{1 - \frac{1}{GF}} \right) \cdot (1 - GF) \cdot \sigma[k] \] (4.67)

und die partikuläre Lösung lautet
\[y_p[k] = \left(\frac{1 - \left(\frac{1}{GF} \right)^{k+1}}{1 - \frac{1}{GF}} \right) \cdot (1 - GF) \cdot \sigma[k] \cdot GF^k = (1 - GF^{k+1}) \cdot \sigma[k] \] (4.68)
4.3 Lösung linearer Differenzengleichungen mit konstanten Koeffizienten

Kombination von allgemeiner homogener und partikulärer Lösung

Die komplette Lösung der Differenzengleichung ergibt sich als Summe aus der allgemeinen homogenen und einer partikulären Lösung.

\[y[k] = Y_0 \cdot \lambda_0^k + Y_1 \cdot \lambda_1^k + \ldots + Y_N \cdot \lambda_N^k + y_p[k] \]
(4.69)

Beispiel: Sprungantwort eines Tiefpasses - Kombination der beiden Lösungen

Die Summe von allgemeiner homogener und partikulärer Lösung errechnet sich zu

\[y[k] = y_n[k] + y_p[k] = Y_0 \cdot GF^k + (1 - GF^{k+1}) \cdot \sigma[k] \]
(4.70)

Bestimmung der Konstanten über Anfangsbedingungen

Die Werte für \(Y_n \) müssen durch Einsetzen von Folgenwerten ermittelt werden. Für jede Konstante \(Y_n \) ist ein Folgenwert als Randbedingung notwendig.

Beispiel: Sprungantwort eines Tiefpasses - Bestimmung der Konstanten

Für das vorliegende Beispiel wird vorgegeben, dass das Ausgangssignal für \(k < 0 \) null ist. Für \(k = 0 \) ergibt sich das Ausgangssignal mit \(y[-1] = 0 \) direkt über die Differenzengleichung zu

\[y[0] = (1 - GF) + GF \cdot 0 = 1 - GF \]
(4.71)

Der Wert \(Y_0 \) in Gleichung (4.70) muss über die Anfangsbedingungen \(y[0] = 1 - GF \) bestimmt werden.

\[y[0] = Y_0 \cdot GF^0 + 1 - GF^1 = Y_0 + 1 - GF = 1 - GF \]
(4.72)

Es ergibt sich die Konstante \(Y_0 = 0 \), und die Lösung der Differenzengleichung lautet

\[y[k] = (1 - GF^{k+1}) \cdot \sigma[k] \]
(4.73)

Bild 4.11 vergleicht das Ausgangssignal der rekursiven Berechnung mit dem der analytischen Berechnung.
Erwartungsgemäß stimmen die beiden Berechnungen überein.

Das Vorgehen bei der Vier-Schritt-Methode zur Lösung linearer Differenzengleichungen mit konstanten Koeffizienten ist in Tabelle 4.3 zusammengefasst.

Tabelle 4.3: Vorgehen bei der Vier-Schritt-Methode zur Lösung linearer Differenzengleichungen mit konstanten Koeffizienten

<table>
<thead>
<tr>
<th>Schritt</th>
<th>Beschreibung</th>
</tr>
</thead>
</table>
| 1 | Lösung der homogenen Differenzengleichung
\[\sum_{n=0}^{N} c_n \cdot y[k-n] = 0 \]
über Ansatz
\[y_h[k] = Y_0 \cdot \lambda^k \]
durch Lösen der charakteristischen Gleichung
\[\lambda^k + \sum_{n=1}^{N} a_n \cdot \lambda^{-k-n} = 0 \]
Allgemeine Lösung in Abhängigkeit der Vielfachheit
\[y_h[k] = Y_1 \cdot \lambda_{1}^{k} + Y_2 \cdot k \cdot \lambda_{1}^{k} + \ldots + Y_{p} \cdot k^{p-1} \cdot \lambda_{1}^{k} + Y_{p+1} \cdot \lambda_{2}^{k} + \ldots + Y_{N} \cdot \lambda_{N,p-1}^{k} \] |
| 2 | Bestimmung einer partikulären Lösung \(y_p[k] \)
- über einen Lösungsansatz je nach Eingangssignal
- über die Methode Variation der Konstanten |
| 3 | Superposition von allgemeiner homogener und spezieller partikulärer Lösung
\[y[k] = y_h[k] + y_p[k] \] |
| 4 | Bestimmung der nicht definierten Konstanten über Anfangsbedingungen |
4.3 Lösung linearer Differenzengleichungen mit konstanten Koeffizienten

4.3.3 Stabilität und charakteristische Gleichung eines Systems

Bei der Einführung des Begriffes der Stabilität in Abschnitt 4.2.3 wird ausgeführt, dass stabile Systeme nach einer Anregung mit endlicher Energie wieder in ihren Ausgangszustand zurückkehren. Das Verhalten des Systems nach der Anregung wird durch die homogene Lösung der Differentialgleichung beschrieben, die in Abschnitt 4.3.2 berechnet wird. Sie setzt sich bei einfachen Lösungen \(\lambda_n \) aus einer Linearkombination von Potenzfolgen zusammen.

\[
y_h[k] = Y_1 \cdot \lambda_1^k + Y_2 \cdot \lambda_2^k + \ldots + Y_N \cdot \lambda_N^k
\]

(4.74)

Damit die homogene Lösung zu null wird, müssen die Lösungen \(\lambda_n \) einen Betrag \(|\lambda_n| < 1 \) aufweisen. Besitzt ein Wert \(\lambda_n \) einen Betrag \(|\lambda_n| > 1 \), divergiert der entsprechende Summand aus Gleichung (4.74), und folglich divergiert auch die Lösung der homogenen Differentialgleichung.

Liegt mit \(\lambda_1 \) eine P-fache Lösung der charakteristischen Gleichung vor, weisen die zugehörigen Summanden der homogenen Lösung Terme der Form

\[
y_h[k] = Y_1 \cdot \lambda_1^k + Y_2 \cdot k \cdot \lambda_1^k + \ldots + Y_p \cdot k^{p-1} \cdot \lambda_1^k + Y_{p+1} \cdot \lambda_2^k + \ldots + Y_N \cdot \lambda_N^k
\]

(4.75)

auf. Da die Exponentialfunktion schneller fällt und wächst als jede Potenz von \(k \), konvergiert diese Summe ebenfalls für einen Betrag \(|\lambda_n| < 1 \), und sie divergiert für einen Betrag \(|\lambda_n| > 1 \). Dabei ist es unerheblich, ob die Lösungen \(\lambda_n \) reell oder komplex sind.

Einen Sonderfall stellen Lösungen mit einem Betrag \(|\lambda_n| = 1 \) dar.

\[
y_h[k] = Y_1 \cdot e^{it} + Y_2 \cdot e^{i\sigma} + Y_3 \cdot e^{-i\sigma} + \ldots
\]

(4.76)

Die Lösungen sind konstant beziehungsweise schwingen mit konstanter Amplitude. Für den Fall einfacher Lösungen liegt damit weder eine konvergente, noch eine divergente Lösung vor. Der Fall entspricht dem diskutierten Fall der Grenzstabilität des zugehörigen Systems.

Besitzt eine Lösung mit einem Betrag \(|\lambda_n| = 1 \) eine Vielfachheit von \(P > 1 \), entstehen Terme der Form

\[
y_h[k] = Y_1 \cdot e^{it} + Y_2 \cdot k \cdot e^{it} + Y_3 \cdot k^2 \cdot e^{it} + \ldots
\]

(4.77)

Da die Exponentialfunktion die Termen nicht dämpft, divergiert der Ausdruck und damit die gesamte homogene Lösung. Das System ist instabil. Aus dieser Diskussion ergibt sich der in Tabelle 4.7 beschriebene Zusammenhang zwischen der Stabilität von linearen, zeitinvarianten Systemen und den Lösungen der charakteristischen Gleichung.
Tabelle 4.4: Zusammenhang zwischen Lösungen der charakteristischen Gleichung und der Stabilität von LTI-Systemen

<table>
<thead>
<tr>
<th>Eigenschaft</th>
<th>Lösungen λ_n der charakteristischen Gleichung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asymptotisch stabiles System</td>
<td>Alle Lösungen λ_n besitzen einen Betrag $</td>
</tr>
<tr>
<td>Grenzstables System</td>
<td>Alle Lösungen λ_n besitzen einen Betrag $</td>
</tr>
<tr>
<td>Instabiles System</td>
<td>Es existiert mindestens eine Lösung λ_n mit einem Betrag $</td>
</tr>
</tbody>
</table>

4.3.4 Sprung- und Impulsantwort eines Systems

Das Ausgangssignal eines zeitdiskreten Systems ist von dem Anfangszustand abhängig. Sind die Anfangsbedingungen null, ist das System energiefrei. Wie im zeitkontinuierlichen Bereich wird die Reaktion eines energiefreien Systems auf eine sprungförmige Erregung $\sigma[k]$ als Sprungantwort $h[k]$ bezeichnet.

![Bild 4.12: Sprungantwort $h[k]$ und Impulsantwort $g[k]$ als Ausgangssignal eines energiefreien Systems](image)

Für das Beispiel des rekursiven Filters wird in Abschnitt 4.3.2 die Antwort des energiefreien Systems auf einen Sprung der Höhe 1 mit der Bedingung $y[k = -1] = 0$ berechnet.

$$y[k] = (1 - GF^{k-1}) \cdot \sigma[k]$$ \hspace{1cm} (4.78)

Analog wird die Impulsantwort $g[k]$ als Reaktion eines energiefreien Systems auf eine Anregung mit einem Impuls $\delta[k]$ definiert. Im Kapitel 3.2 wird gezeigt, dass die Impulsfolge $\delta[k]$ als Differenz zweier Sprungfolgen berechnet werden kann.

$$\delta[k] = \sigma[k] - \sigma[k-1]$$ \hspace{1cm} (4.79)

Wegen der Linearität und Zeitinvarianz errechnet sich die Systemreaktion eines energiefreien LTI-Systems auf einen Impuls am Eingang aus der Differenz zweier Sprungantworten zu

$$g[k] = h[k] - h[k-1]$$ \hspace{1cm} (4.80)

Die Systemantwort $g[k]$ eines rekursiven Filters auf einen Impuls $\delta[k]$ ergibt sich demnach zu

$$g[k] = h[k] - h[k-1] = (1 - GF^{k-1} \cdot \sigma[k]) - (1 - GF^k \cdot \sigma[k-1])$$ \hspace{1cm} (4.81)
4.3.5 Berechnung der Systemantwort durch Superposition

Ist ein System linear und zeitinvariant, kann ein Ausgangssignal dadurch berechnet werden, dass die Eingangssignale zerlegt, ihre jeweiligen Systemantwornten berechnet und anschließend addiert werden. Dieses Prinzip wird als Superpositionsprinzip bezeichnet. Als erste Anwendung dieses Prinzips wird in Abschnitt 4.3.4 die Impulsantwort als Differenz zweier Sprungantworten berechnet. Wird zum Beispiel ein rekursives Filter mit der Differenzengleichung

\[y[k] = (1 - GF) \cdot u[k] + GF \cdot y[k-1] \] (4.82)

mit einer Rechteckfolge der Länge 10 und der Höhe 5 beaufschlagt, kann das Eingangssignal als Summe zweier Sprungfolgen dargestellt werden

\[u[k] = 5 \cdot (\sigma[k] - \sigma[k-10]) = 5 \cdot \sigma[k] - 5 \cdot \sigma[k-10] \] (4.83)

Damit ergibt sich das Ausgangsignal \(y[k] \) aus der Summe der beiden Sprungantworten

\[y[k] = 5 \cdot h[k] - 5 \cdot h[k-10] = 5 \cdot (1 - GF^{k-1} \cdot \sigma[k]) - (1 - GF^{k-10} \cdot \sigma[k-10]) \] (4.84)

Bild 4.13 stellt das Superpositionsprinzip für das Beispiel des rekursiven Filters bei Anregung mit einem rechteckförmigen Signal dar.

Mit der Kenntnis der Sprungantwort eines Systems kann demnach für Eingangssignale, die sich über die Sprungfolgen darstellen lassen, eine Systemantwort über Superposition berechnet werden.
4.4 Berechnung der Systemantwort über die Faltungssumme

Das Superpositionsprinzip erlaubt eine Zerlegung des Eingangssignals in eine Linearkombination von Eingangssignalen, deren entsprechendes Ausgangssignal bekannt ist. Auf Basis des Superpositionsprinzips kann bei bekannter Impulsantwort \(g[k] \) das Ausgangssignal zu einem beliebigen Eingangssignal \(u[k] \) bestimmt werden. Der Vorgang wird wie bei zeitkontinuierlichen Systemen als Faltung bezeichnet. Im diskreten Zeitbereich geht das Faltungsintegral in eine sogenannte Faltungssumme über.

4.4.1 Herleitung der Faltungssumme

Mathematisch kann die Faltungssumme über das Superpositionsprinzip hergeleitet werden. Die Systemreaktion eines energiefreien Systems auf einen Impuls am Eingang ist die Impulsantwort \(g[k] \). Ein beliebiges Eingangssignal \(u[k] \) kann mit der Ausblendeigenschaft der Impulsfolge als gewichtete Summe von Impulsen beschrieben werden.

\[
 u[k] = \sum_{\kappa=-\infty}^{\infty} u[\kappa] \cdot \delta[k - \kappa] \quad (4.85)
\]

Die Systemantwort \(y[k] \) auf ein solches Eingangssignal ergibt sich aus derselben Linearkombination von Impulsantworten

\[
 y[k] = \sum_{\kappa=-\infty}^{\infty} u[\kappa] \cdot g[k - \kappa] = u[k] \ast g[k] \quad (4.86)
\]

Diese Operation wird als Faltungssumme oder auch diskrete Faltung bezeichnet.

Beispiel: Berechnung der gleitenden Mittelung über die Faltungssumme

Der im vorangegangenen Abschnitt behandelte Algorithmus zur gleitenden Mittelung führte zu der Differenzengleichung

\[
 y[k] = \frac{1}{5} (u[k] + u[k-1] + u[k-2] + u[k-3] + u[k-4]) \quad (4.87)
\]

Durch Einsetzen der Impulsfolge als Eingangssignal ergibt sich die Impulsantwort zu

\[
 g[k] = \frac{1}{5} (\delta[k] + \delta[k-1] + \delta[k-2] + \delta[k-3] + \delta[k-4]) \quad (4.88)
\]

und das Ausgangssignal zu einem beliebigen Eingangssignal kann durch die Faltungssumme berechnet werden

\[
 y[k] = \sum_{\kappa=-\infty}^{\infty} u[\kappa] \cdot g[k - \kappa]
 \]

\[
 = \sum_{\kappa=-\infty}^{\infty} u[\kappa] \cdot \frac{1}{5} (\delta[k - \kappa] + \delta[k - \kappa - 1] + \delta[k - \kappa - 2] + \delta[k - \kappa - 3] + \delta[k - \kappa - 4]) \quad (4.89)
\]

\[
 = \frac{1}{5} \sum_{\kappa=0}^{\infty} u[k - \kappa]
\]
4.4 Berechnung der Systemantwort über die Faltungssumme

4.4.2 Grafische Interpretation der Faltungssumme

Die direkte analytische Berechnung der Faltungssumme ist nur in Ausnahmefällen möglich und sinnvoll, da die Zusammenfassung der Summe aufwendig ist. Im Gegensatz zur zeitkontinuierlichen Faltung kann die zeitdiskrete Faltung aber numerisch ausgeführt werden. Die Faltungssumme ist damit eine Realisierungsform zeitdiskreter Systeme. Zum besseren Verständnis wird deshalb die Faltung an einem Beispiel zweier Folgen grafisch veranschaulicht.

Beispiel: Grafische Interpretation der Faltungssumme

Die Folge $u[k]$ wird als Sprungfolge angenommen, die Impulsantwort $g[k]$ ergibt sich in diesem Beispiel zu

$$g[k] = 2 \cdot \sigma[k] - \sigma[k-2] - \sigma[k-4]$$ \hspace{1cm} (4.90)

Die Folgen sind in Bild 4.14 grafisch dargestellt.

Die Faltung ist über eine Summenformel definiert. Sie kann umgeformt werden zu

$$u[k] * g[k] = \sum_{\kappa=-\infty}^{\infty} u[\kappa] \cdot g[k-\kappa] = \sum_{\kappa=-\infty}^{\infty} u[\kappa] \cdot g[-(\kappa - k)]$$ \hspace{1cm} (4.91)

Mit dieser Darstellung fällt die Interpretation einfacher: Die Folge $g[\kappa]$ wird an der Achse $\kappa = 0$ gespiegelt und um k nach rechts verschoben. Dann wird das Produkt der einzelnen Folgenwerte addiert. Bild 4.15 stellt die unterschiedlichen Phasen der grafischen Faltung dar.
Für negative Folgenindizes k überschneiden sich die beiden Folgen nicht. Zum Zeitpunkt $k = 0$ überschneiden sich die beiden Folgen an genau einer Stelle $\kappa = 0$. Das Ergebnis ist damit $y[0] = 2$. Für $k = 1$ ergibt sich eine Überschneidung der ersten beiden Werte. Nach Bildung des Produktes werden die Ergebnisse addiert und es ergibt sich $y[1] = 2 + 2 = 4$. So wird für die übrigen Werte von k fortgefahren. Für $k \geq 3$ überschneidet sich die Folge x komplett mit der Folge g, sodass sich der Wert des Ausgangssignals nicht weiter ändert.

Aus der Grafik kann abgelesen werden, dass das Signal $y[k]$ ab $k = 3$ konstant bleibt.
Die in diesem Beispiel dargestellte Methode zur Berechnung der Faltungssumme ist in Tabelle 4.5 zusammengefasst.

Tabelle 4.5: Vorgehen bei der Berechnung der Systemantwort über die Faltungssumme

<table>
<thead>
<tr>
<th>Schritt</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Berechnung der Impulsantwort (g[k])</td>
</tr>
<tr>
<td>2</td>
<td>Skizze von Eingangssignal (u[\kappa]) und Impulsantwort (g[\kappa])</td>
</tr>
<tr>
<td>3</td>
<td>Skizze von einem der Signale (u[k - \kappa]) oder (g[k - \kappa]) über Spiegelung an der Achse (\kappa = 0) und Verschiebung um (k) nach rechts</td>
</tr>
<tr>
<td>4</td>
<td>Aufteilen der Faltungssumme in sinnvolle Bereiche (Überlappungsbereiche, Sprungstellen, Definitionsgrenzen, ...)</td>
</tr>
<tr>
<td>5</td>
<td>Lösen der Summen und Superposition der Ergebnisse</td>
</tr>
</tbody>
</table>

Im Online-Portal *Systemtheorie Online* verdeutlicht die Applikation Zeitdiskrete Faltung grafisch die Faltungsoperation für zeitdiskrete Signale.

4.4.3 Rechenregeln zur Faltungssumme

Zur Vereinfachung der Berechnung von Faltungssummen können Rechenregeln angewendet werden, die im Folgenden kurz dargestellt sind. Aus der grafischen Darstellung zur Faltung wird deutlich, dass die Faltung eine kommutative Operation ist. Der mathematische Nachweis ergibt sich aus einer Indextransformation.

\[
x_1[k] * x_2[k] = \sum_{\kappa=-\infty}^{\infty} x_1[\kappa] \cdot x_2[k - \kappa] = \sum_{\kappa=-\infty}^{\infty} x_1[k - \kappa] \cdot x_2[\kappa]
\] (4.92)

Da sich die Summe von \(-\infty\) bis \(+\infty\) erstreckt, ist eine Verschiebung um \(k \) und eine Spiegelung nicht relevant, und es ergibt sich

\[
x_1[k] * x_2[k] = \sum_{\kappa=-\infty}^{\infty} x_1[\kappa] \cdot x_2[k - \kappa] = \sum_{\kappa=-\infty}^{\infty} x_1[k - \kappa] \cdot x_2[\kappa] = x_2[k] * x_1[k]
\] (4.93)

Das Distributivgesetz ergibt sich aus der Linearität der Summe.

\[
(x_1[k] + x_2[k]) * x_3[k] = \sum_{\kappa=-\infty}^{\infty} (x_1[\kappa] + x_2[\kappa]) \cdot x_3[k - \kappa]
\]

\[
= \sum_{\kappa=-\infty}^{\infty} x_1[\kappa] \cdot x_3[k - \kappa] + x_2[\kappa] \cdot x_3[k - \kappa] = x_1[k] * x_3[k] + x_2[k] * x_3[k]
\] (4.94)

Das Assoziativgesetz wird hier nur genannt und nicht bewiesen. Es lautet:

\[
(x_1[k] * x_2[k]) * x_3[k] = x_1[k] * (x_2[k] * x_3[k])
\] (4.95)
Bei der grafischen Faltung wird gezeigt, dass der von null verschiedene Überlappungsbereich für kausale Folge immer im Zahlenbereich von 0 … k liegt. Aus diesem Grund muss die Faltung auch nur in diesem Bereich ausgeführt werden, sodass für die Faltung zweier kausaler Folgen gilt:

\[
\sum_{n=-\infty}^{\infty} x_1[n] \cdot x_2[k - n] = \sum_{n=-\infty}^{k} x_1[n] \cdot x_2[k - n]
\]

(4.96)

Aus der Eigenschaft folgt außerdem, dass die Faltung zweier kausaler Folgen zu einer kausalen Folge führt. Die Rechenregeln für die Faltung mit einer Impulsfolge werden in Abschnitt 3.2.1 bei der Einführung von Impulsfolgen behandelt.

Tabelle 4.6: Zusammenfassung der Rechenregeln zur Faltungssumme

<table>
<thead>
<tr>
<th>Rechenregel</th>
<th>Darstellung als Gleichung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kommutativgesetz</td>
<td>(x_1[k] \ast x_2[k] = x_2[k] \ast x_1[k])</td>
</tr>
<tr>
<td>Distributivgesetz</td>
<td>((x_1[k] + x_2[k]) \ast x_3[k] = x_1[k] \ast x_3[k] + x_2[k] \ast x_3[k])</td>
</tr>
<tr>
<td>Assoziativgesetz</td>
<td>((x_1[k] \ast x_2[k]) \ast x_3[k] = x_1[k] \ast (x_2[k] \ast x_3[k]))</td>
</tr>
<tr>
<td>Faltung kausaler Folgen</td>
<td>(\sum_{n=-\infty}^{\infty} x_1[n] \cdot x_2[k - n] = \sum_{n=-\infty}^{k} x_1[n] \cdot x_2[k - n])</td>
</tr>
<tr>
<td>Faltung mit einem Impuls</td>
<td>(\delta[k] \ast x[k] = x[k])</td>
</tr>
<tr>
<td>Faltung mit einem Impuls an der Stelle (k_0)</td>
<td>(\delta[k - k_0] \ast x[k] = x[k - k_0])</td>
</tr>
</tbody>
</table>

4.4.4 Impulsantwort und Stabilität

In Abschnitt 4.2.3 wird die Stabilität von Systemen aus physikalischer Sicht definiert. Mit dem Wissen, dass sich bei einem LTI-System die Systemantwort \(y[k] \) aus dem Faltungsintegral ergibt, kann die Stabilitätsbewertung auf die Impulsantwort \(g[k] \) zurückgeführt werden. Dabei wird davon ausgegangen, dass das System für den Zeitraum \(0 < k \leq k_0 \) angeregert wird. Für den Zeitraum \(k \geq k_0 \) nach der Anregung wird das Verhalten der Systemantwort \(y[k] \) analysiert.

\[
y[k] = \sum_{\kappa=-\infty}^{k} u[\kappa] \cdot g[k - \kappa]
\]

(4.97)

Aus der physikalischen Bedingung an Stabilität leitet sich die Forderung ab, dass bei einer zeitlich begrenzten Anregung das Ausgangssignal den Grenzwert

\[
\lim_{k \to \infty} y[k] = 0
\]

(4.98)

aufweisen muss. Ist der Betrag des Eingangssignals beschränkt, kann er mit \(|u[\kappa]| < u_{\text{max}} \) abgeschätzt werden, und der Betrag des Ausgangssignals kann abgeschätzt werden mit
4.4 Berechnung der Systemantwort über die Faltungssumme

\[y[k] \leq \sum_{\kappa=0}^{k_0} u[\kappa] \cdot |g[k-\kappa]| \leq u_{\max} \sum_{\kappa=0}^{k_0} |g[k-\kappa]| \] \hspace{1cm} (4.99)

Es handelt sich um eine Summe von \(k_0 + 1 \) Folgeliedern. Die Summe wird zu null, wenn der Betrag der Impulsantwort \(g[k] \) gegen null konvergiert.

\[\lim_{k \to \infty} |g[k]| = 0 \] \hspace{1cm} (4.100)

Ein System ist damit stabil, wenn die Impulsantwort gegen null konvergiert, es ist instabil, wenn die Impulsantwort divergiert. Einen Sonderfall stellen Impulsantworten \(g[k] \) dar, die für \(k \to \infty \) einem konstanten Wert \(g_0 \) zustreben. Bei diesen Systemen konvergiert das Ausgangssignal für \(k \geq k_0 \) gegen einen konstanten Wert.

\[\lim_{k \to \infty} y[k] = \lim_{k \to \infty} \sum_{\kappa=0}^{k_0} u[\kappa] \cdot g[k-\kappa] = g_0 \cdot \sum_{\kappa=0}^{k_0} x[\kappa] = y_0 \] \hspace{1cm} (4.101)

Systeme, deren Impulsantworten \(g[k] \) für \(k \to \infty \) einem konstanten Wert \(g_0 \) zustreben, entsprechen damit den Bedingungen grenzstabiler Systeme. Dasselbe gilt für Systeme, deren Impulsantwort für \(k \to \infty \) mit konstanter Amplitude schwingt. Der Zusammenhang zwischen Impulsantwort und Stabilität linearer, zeitinvarianter Systeme ist in Tabelle 4.7 zusammengefasst.

<table>
<thead>
<tr>
<th>Eigenschaft</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stabiles System</td>
<td>(\lim_{k \to \infty} g[k] = 0)</td>
</tr>
<tr>
<td>Grenzstables System</td>
<td>(\lim_{k \to \infty} g[k] = g_0) or harmonische Schwingung mit konstanter Amplitude</td>
</tr>
<tr>
<td>Instabiles System</td>
<td>(\lim_{k \to \infty} g[k]) ist divergent</td>
</tr>
</tbody>
</table>

Zur Stabilitätsbewertung von Systemen im Zeitbereich muss die Impulsantwort bekannt sein. Es wird sich zeigen, dass eine Bewertung der Stabilität im sogenannten z-Bereich praktikabler vorgenommen werden kann.
4.4.5 Faltung in MATLAB

Typischerweise werden die Daten nicht mit den führenden Nullen angegeben, sondern es werden nur die von Null verschiedenen Werte der Signalfolge als Vektor angegeben. So ergeben sich die Vektoren \(u \) und \(g \). Die Faltung wird mit dem Befehl \(\text{conv}(u,g) \) ausgeführt. Die Abkürzung steht für den englischen Begriff convolution. Der Ergebnisvektor besitzt die Länge

\[
K = K_1 + K_2 - 1
\]

Der Folgenindex startet an der Stelle

\[
k_{\text{min}} = k_{\text{min1}} + k_{\text{min2}}
\]

und endet an der Stelle

\[
k_{\text{max}} = k_{\text{min}} + K_1 + K_2 - 2
\]

In MATLAB kann das Programm wie folgt ausgeführt werden.

```matlab
% Definition der Signalfolgen als Vektoren
u = [2 2 1 1];
k1min = 2;
K1 = length(u);
g = [1 1 1 1 1 1];
k2min = -3;
K2 = length(g);

% Berechnung der Faltung
y = conv(u,g);

% Berechnung der entsprechenden Indizes k
kmin = k2min + k1min;
K = K1 + K2 - 1;
kc = kmin : 1 : kmin + K - 1;

% Grafische Darstellung
stem(kc,y);
```
Für das in Bild 4.17 dargestellte Beispiel ergibt sich das in Bild 4.18 Ergebnis.

![Diagramm](image_url)

Bild 4.18: Faltung der Signalfolgen \(u[k] \) und \(g[k] \)

Alle Punkte, die nicht in das Diagramm eingezeichnet sind, sind null.
4.5 Projekt: Programmierbare Switched-Capacitor-Schaltungen

4.5.1 Switched-Capacitor-Schaltungen

Abtasttheorem bei Switched-Capacitor-Schaltungen

Simulation in LT-Spice

4.5.2 Field-Programmable-Analog-Arrays (FPAA)

Aufbau von Field-Programmable-Analog-Arrays

Fully-Differential-Schaltungen

4.5.3 Realisierung eines Butterworth-Filters mit einem FPAA

Entwicklung und Aufbau des analogen Filters

Realisierung des Filters mit einem FPAA

Simulation in LT-Spice

4.5.4 Experimenteller Vergleich der Filtereigenschaften im Zeit- und Frequenzbereich
4.6 Literatur

4.6.1 Literaturstellen mit besonders anschaulicher Darstellung

4.6.2 Literaturstellen mit praktischen Anwendungen

4.6.3 Literatur zu MATLAB

[Schw07] Schweizer, Wolfgang: MATLAB kompakt, Oldenbourg Verlag München, 2007

4.6.4 Weiterführende Literatur

4.6.5 Literatur zum Projekt

[]
4.7 Übungsaufgaben – Zeitdiskrete Systeme im Zeitbereich

4.7.1 Eigenschaften zeitdiskreter Systeme
Prüfen Sie, ob Systeme mit den folgenden Gleichungen

- linear
- zeitinvariant
- kausal
- rekursiv / nicht rekursiv

a) \(y[k] = -\frac{1}{2} \cdot u[k - 1] \)

b) \(y[k] = \sum_{n=0}^{k} \frac{1}{2} \cdot u[k - n] \)

c) \(y[k] = -2 \cdot y[k - 1] + u[k - 1] \cdot u[k] \)

d) \(y[k + 2] = -y[k + 1] + u[k + 3] - 2 \cdot u[k + 1] \)

4.7.2 Numerische Lösung einer homogenen Differenzengleichung
Gegeben ist die Differenzengleichung eines Signals \(u[k] \) mit

\(u[k + 3] - u[k + 1] + u[k] = 0 \)

b) Skizzieren Sie das Signal \(u[k] \) in dem Bereich \(k = 0 \ldots 10 \).

4.7.3 Interpretation der Impulsantwort und Berechnung des Faltungsintegrals
Ein zeitdiskretes System besitzt die Impulsantwort

\(g[k] = \left(\frac{1}{2} \right)^k \cdot \sigma[k] \)

a) Berechnen Sie die ersten 6 Werte der Impulsantwort und skizzieren Sie das Ergebnis.

b) Berechnen Sie die Sprungantwort des Systems über die Faltungssumme

\(y[k] = \sum_{k=-\infty}^{\infty} u[k] \cdot g[k - k] \)

und über eine rekursive Differenzengleichung.

\(h[k] = h[k - 1] + g[k] \)

Vergleichen Sie die Ergebnisse.
4.7.4 Definition eines zeitdiskreten Systems über Abtastung der Impulsantwort

Ein analoges System mit der Impulsantwort
\[g(t) = t \cdot e^{-\frac{t}{2}} \cdot \sigma(t) \]
soll durch ein digitales Filter mit einer endlichen Impulsantwort nachgebildet werden. Dazu werden sechs Werte der Impulsantwort \(g(t) \) in einem Abstand \(T_A = 3 \) abgetastet.

a) Bestimmen Sie die Abtastfolge \(g[k] \) für \(k = 0 \ldots 5 \).

b) Ist das System stabil? Begründen Sie Ihre Antwort.

c) Geben Sie eine allgemeine Gleichung für den Folgenwert \(y[k] \) bei Anregung des Systems mit einer beliebigen Eingangsfolgen \(u[k] \) an.

Für analoge Systeme berechnet sich die Sprungantwort aus
\[h(t) = \int_0^1 g(\tau) \, d\tau \]

d) Wie würden Sie die Sprungantwort \(h[k] \) des zeitdiskreten Systems berechnen, das diese Sprungantwort approximieren soll? Begründen Sie Ihre Antwort.

e) Geben Sie die ersten sechs Werte der Sprungantwort \(h[k] \) an.

4.7.5 Multiplikation zweier Polynome mit Faltung

Gegeben sind die Polynome \(f(x) \) und \(g(x) \).
\[f(x) = x^2 + 2 \cdot x + 3 \quad g(x) = 2 \cdot x^2 + 3 \cdot x + 1 \]

a) Berechnen Sie das Polynom \(y(x) = f(x) \cdot g(x) \) durch Ausmultiplizieren der beiden Polynome.

b) Stellen Sie die Koeffizienten der beiden Polynome als Folgen dar und berechnen Sie die Faltung der beiden Folgen.

c) Vergleichen Sie die Faltung der beiden Folgen mit dem Ergebnis der Multiplikation unter a).
4.8 Musterlösung – Zeitdiskrete Systeme im Zeitbereich

4.8.1 Eigenschaften zeitdiskreter Systeme

a) Das System a ist kausal, zeitinvariant, linear, aber nicht rekursiv.
\[y[k] = -\frac{1}{2} \cdot u[k-1] \]

b) Das System b ist kausal, zeitinvariant, linear, aber nicht rekursiv.
\[y[k] = \sum_{n=0}^{k} \left(\frac{1}{2} \right)^{k-n} \cdot u[k-n] \]

c) Das System c ist kausal, zeitinvariant, rekursiv, aber nicht linear.
\[y[k] = -2 \cdot y[k-1] + u[k-1] \cdot u[k] \]

d) Das System ist linear, zeitinvariant, rekursiv, aber nicht kausal.
\[y[k+2] = -y[k+1] + u[k+3] - 2 \cdot u[k+1] \]

4.8.2 Numerische Lösung einer homogenen Differenzengleichung

a) Das System ist wegen der konstanten Koeffizienten zeitinvariant. Damit kann eine Index-Transformation durchgeführt werden.
\[u[k] - u[k-2] + u[k-3] = 0 \]

<table>
<thead>
<tr>
<th>k</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>u[k]</td>
<td>1</td>
<td>2</td>
<td>-2</td>
<td>1</td>
<td>-4</td>
<td>3</td>
<td>-5</td>
<td>7</td>
<td>-8</td>
<td>12</td>
<td>-15</td>
</tr>
</tbody>
</table>

b) Darstellung des Signals von u[0] bis u[10].
4.8.3 Interpretation der Impulsantwort und Berechnung des Faltungsintegrals

a) Die Impulsantwort errechnet sich durch Einsetzen zu den in der folgenden Tabelle und dem folgenden Diagramm dargestellten Werten.

<table>
<thead>
<tr>
<th>k</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>g[k]</td>
<td>1</td>
<td>0.5</td>
<td>0.25</td>
<td>0.125</td>
<td>0.0625</td>
<td>0.031</td>
<td>0.016</td>
</tr>
<tr>
<td>h[k]</td>
<td>1</td>
<td>1.5</td>
<td>1.75</td>
<td>1.875</td>
<td>1.9375</td>
<td>1.9688</td>
<td>1.9844</td>
</tr>
</tbody>
</table>

c) Die Sprungantwort kann rekursiv berechnet werden.

\[h[k] = g[k] + h[k-1] \]

Die entsprechenden Werte sind in der Tabelle oben und dem Diagramm oben rechts bereits dargestellt. Außerdem kann die Berechnung über eine Faltungssumme bestimmt werden, die auf eine geometrische Reihe zurückgeführt wird.

\[h[k] = \sum_{\sigma=0}^{k} \sigma[k-\kappa] \cdot g[k] = \sum_{\sigma=0}^{k} \left(\frac{1}{2} \right)^{\kappa} = \frac{1-(\frac{1}{2})^{k+1}}{1-\frac{1}{2}} = 2 \cdot \left(\frac{1}{2} \right)^{k} \]

Die Sprungantworten sind identisch.

4.8.4 Definition eines zeitdiskreten Systems über Abtastung der Impulsantwort

a) Die Impulsantwort des zeitkontinuierlichen Systems lautet:

\[g(t) = t \cdot e^{-t/2} \cdot \sigma(t) \]

Mit der Abtastzeit von \(T_A = 3 \) ergibt sich

\[g[k] = 3 \cdot k \cdot e^{-3k/2} \cdot \sigma[k] \]

mit den in der folgenden Tabelle dargestellten Werten für \(g[k] \).

c) Die angegebene Folge \(g[k] \) ist eine endliche Folge und kann dargestellt werden als

\[
\begin{align*}
g[k] &= 0 \cdot \delta[k] + 0.6694 \cdot \delta[k-1] + 0.2987 \cdot \delta[k-2] + 0.1 \cdot \delta[k-3] + 0.0297 \cdot \delta[k-4] + 0.0083 \cdot \delta[k-5]
\end{align*}
\]
Daraus ergibt sich die Folge \(y[k] \) durch die Transformation von \(\delta[k] \) nach \(u[k] \) zu

\[
\begin{align*}
y[k] &= 0.6694 \cdot u[k-1] + 0.2987 \cdot u[k-2] + 0.1 \cdot u[k-3] + 0.0297 \cdot u[k-4] + 0.0083 \cdot u[k-5]
\end{align*}
\]

d) Die Sprungantwort-Folge \(h[k] \) ergibt sich aus der Summation der Impulsantwort multipliziert mit dem Abstand der Abtastwerte \(T_A \).

\[
h[k] = T_A \cdot \sum_{k=0}^{\infty} g[k]
\]

e) Die Abtastwerte der Sprungantwort sind bereits in der Tabelle und dem Diagramm oben dargestellt.

f) Der stationäre Endwert der Sprungantwort wird erreicht, wenn alle zur Berechnung erforderlichen Eingangswerte den Wert eins angenommen haben.

\[
\lim_{k \to \infty} y[k] = 3 \cdot (0.6694 + 0.2987 + 0.1 + 0.0297 + 0.0083) = 3.3184
\]
Der stationäre Endwert der Sprungantwort des analogen Systems errechnet sich zum Beispiel mithilfe der Laplace-Transformierten zu

\[
\lim_{s \to 0} h(t) = \lim_{s \to 0} s \cdot H(s) = \lim_{s \to 0} \frac{1}{s + \frac{1}{2}} = 4
\]
Die Unterschiede zwischen der Sprungantwort \(h(t) \) und Sprungantwort-Folge \(h[k] \) ergeben sich, weil die Impulsantwort nicht oft genug abgetastet wird. Bei der Abtastung mit einer Abtastzeit von
4.8 Musterlösung – Zeitdiskrete Systeme im Zeitbereich

\[T_A = 0.5 \] stimmen die Sprungantwort \(h(t) \) und die Signalfolge \(h[k] \) deutlich besser überein, wie folgendes Diagramm zeigt.

![Diagramm](image)

4.8.5 Multiplikation zweier Polynome mit Faltung

a) Die Polynome werden miteinander multipliziert, es ergibt sich

\[y(x) = f(x) \cdot g(x) = (x^2 + 2 \cdot x + 3) \cdot (2 \cdot x^2 + 3 \cdot x + 1) = 2 \cdot x^4 + 7 \cdot x^3 + 13 \cdot x^2 + 11 \cdot x + 3 \]

b) Die Vektoren der Polynome ergeben sich zu

\[f = [1 \ 2 \ 3] \]

und

\[g = [2 \ 3 \ 1] \]

Der Befehl \(\text{conv}(f,g) \) faltet die beiden Vektoren miteinander.

\[y = \text{conv}(f,g) = [2 \ 7 \ 13 \ 11 \ 3] \]

5 z-Transformation von Signalen

Nach der Definition werden einige Korrespondenzen über die Definitionsgleichung bestimmt, und es wird ein Zusammenhang zwischen der z-Transformation und der Laplace-Transformation hergestellt.

5.1 Grundlagen der z-Transformation

5.1.1 Definitionsgleichung der z-Transformation

\[x_a(t) = \sum_{k=0}^{\infty} x(k \cdot T_a) \cdot \delta(t - k \cdot T_a) \]

(5.1)

Bei \(x_a(t) \) handelt es sich um ein kontinuierliches Signal. Deshalb kann die Laplace-Transformierte berechnet werden zu

\[X_a(s) = \mathcal{L} \left\{ \sum_{k=0}^{\infty} x(k \cdot T_a) \cdot \delta(t - k \cdot T_a) \right\} \]

(5.2)

Da die Laplace-Transformation eine lineare Operation ist und der Term \(x_a(k \cdot T_a) \) nicht von der Zeit \(t \) abhängt, kann die Laplace-Transformierte umgerechnet werden in
\[\mathcal{L}\left\{ \sum_{k=0}^{\infty} x(k \cdot T_s) \cdot \delta(t - k \cdot T_s) \right\} = \sum_{k=0}^{\infty} x(k \cdot T_s) \cdot \mathcal{L}\{\delta(t - k \cdot T_s)\} = \sum_{k=0}^{\infty} x(k \cdot T_s) \cdot e^{-kT_s s} = \sum_{k=0}^{\infty} x[k] \cdot (e^{T_s s})^{-k} \] (5.3)

Dabei ist die Variable \(s \) eine komplexe Zahl mit Real- und Imaginärteil. Durch die Substitution von

\[z = e^{T_s s} \] (5.4)

kann die Schreibweise vereinfacht werden zu

\[X(z) = \sum_{k=0}^{\infty} x[k] \cdot z^{-k} \] (5.5)

Diese Gleichung ist die Definitionsgleichung der z-Transformation für kausale Signale. Ähnlich wie bei den vorangegangenen Transformationen wird für die z-Transformation die Schreibweise

\[\mathcal{Z}\{x[k]\} = X(z) \] (5.6)

und für die inverse z-Transformation die Schreibweise

\[\mathcal{Z}^{-1}\{X(z)\} = x[k] \] (5.7)

eingeführt. Alternativ kann das Hantel-Symbol verwendet werden.

\[x[k] \leftrightarrow X(z) \] (5.8)

5.1.2 z-Transformation grundlegender Signale

Wie bei der Laplace-Transformation werden zunächst einige Korrespondenzen der z-Transformation direkt über die Definitionsgleichung der z-Transformation berechnet. Dabei ergibt sich die z-Transformierte eines Signals durch Auswertung von endlichen und unendlichen Reihen.

Diskrete Impulsfolge

Aus der Definition der diskreten Impulsfolge

\[x[k] = \delta[k] = \begin{cases} 1 & \text{für } k = 0 \\ 0 & \text{für ganzzahlige } k \neq 0 \end{cases} \] (5.9)

ergibt sich die z-Transformierte durch Einsetzen in die Definitionsgleichung zu

\[X(z) = \sum_{k=0}^{\infty} \delta[k] \cdot z^{-k} = 1 \cdot z^0 = 1 \] (5.10)

Ist der Impuls um \(k_0 \) verschoben, ändert sich die z-Transformierte zu
Der Vergleich der z-Transformierten von Impuls und verschobenem Impuls ist ein erster Hinweis auf eine Verschiebungsregel.

Diskrete Rechteckfolge

Für die Rechteckfolge mit der Definition
\[x[k] = \sigma[k] - \sigma[k-K] \] \hspace{1cm} (5.12)

wird die Summe in der Definitionsgleichung der z-Transformation endlich. Es gilt
\[X(z) = \sum_{k=0}^{\infty} \left(\sigma[k] - \sigma[k-K] \right) \cdot z^k = \sum_{k=0}^{K} z^k \] \hspace{1cm} (5.13)

Die Auswertung der endlichen Summe mit den Rechenregeln für endliche geometrische Reihen
\[\sum_{k=0}^{K} q^k = \frac{1-q^K}{1-q} \] \hspace{1cm} (5.14)

ergibt die z-Transformierte
\[X(z) = \sum_{k=0}^{\infty} \left(\sigma[k] - \sigma[k-K] \right) \cdot z^k = \frac{1-z^K}{1-z^{-1}} \] \hspace{1cm} (5.15)

Diskrete Sprungfolge

Die z-Transformation der Sprungfolge mit der Definition
\[x[k] = \begin{cases} 1 & \text{für ganzzahlige } k \geq 0 \\ 0 & \text{für ganzzahlige } k < 0 \end{cases} \] \hspace{1cm} (5.16)

errechnet sich direkt durch Einsetzen in die Definitionsgleichung zu
\[X(z) = \sum_{k=0}^{\infty} \sigma[k] \cdot z^k = \sum_{k=0}^{\infty} z^k = \sum_{k=0}^{\infty} (z^{-1})^k \] \hspace{1cm} (5.17)

Die Berechnung der Reihe kann auf die unendliche geometrische Reihe zurückgeführt werden. Die geometrische Reihe ist definiert als:
\[1 + q + q^2 + ... = \sum_{k=0}^{\infty} q^k \] \hspace{1cm} (5.18)

Die Konvergenz der Reihe ist von dem Betrag der Größe q abhängig. Für einen Betrag |q| < 1 konvergiert die Reihe und kann berechnet werden zu
\[\sum_{k=0}^{\infty} q^k = \frac{1}{1 - q} \]

Die Summe aus Gleichung (5.17) ist eine geometrische Reihe, die für \(|z^{-1}| < 1\) konvergiert und dargestellt werden kann als

\[X(z) = \sum_{k=0}^{\infty} (z^{-1})^k = \frac{1}{1 - z^{-1}} = \frac{z}{z - 1} \]

Auch an diesem Beispiel wird eine Verschiebung um \(k_0\) untersucht.

\[X(z) = \sum_{k=0}^{\infty} \sigma[k - k_0] \cdot z^{-k} = \sum_{k=0}^{\infty} z^{-(k+k_0)} = z^{-k_0} \cdot \sum_{k=0}^{\infty} z^{-k} = z^{-k_0} \cdot \frac{z}{z - 1} \]

Die Auswertung der Beispiele Impulsfolge und Sprungfolge legt die Vermutung nahe, dass die Verschiebung einer Folge um \(k_0\) nach rechts generell einer Multiplikation der ursprünglichen \(z\)-Transformierten mit \(z^{-k_0}\) entspricht.

Diskrete Exponentialfolge

Die diskrete Exponentialfolge ist definiert als

\[x[k] = \lambda^k \cdot \sigma[k] \]

mit

\[\lambda = r_0 \cdot e^{j\alpha_0} \]

Analog zur Sprungfolge ergibt sich die \(z\)-Transformierte zu

\[X(z) = \sum_{k=0}^{\infty} \sigma[k] \cdot \lambda^k \cdot z^{-k} = \sum_{k=0}^{\infty} \lambda^k \cdot z^{-k} = \sum_{k=0}^{\infty} \left(\frac{\lambda}{z} \right)^k \]

Diese Gleichung kann für die Berechnung der Korrespondenz für die diskrete Exponentialfolge verwendet werden. Ist der Betrag von \(|\lambda_0 z^{-1}| < 1\), konvergiert die Summe, und es gilt:

\[X(z) = \sum_{k=0}^{\infty} \left(\lambda_0 z^{-1} \right)^k = \frac{1}{1 - \lambda_0 z^{-1}} = \frac{z}{z - \lambda_0} \]

Die bislang berechneten \(z\)-Transformierten werden über die Definitionsgleichung berechnet. Zur Ver- einfachung der Berechnung werden in Abschnitt 5.2 einige Rechenregeln der \(z\)-Transformation hergeleitet.

5.1.3 Existenz der \(z\)-Transformierten

Bei der Berechnung einer \(z\)-Transformierten wird eine unendliche Reihe ausgewertet. Die \(z\)-Transformierte existiert nur dann, wenn diese Reihe konvergiert. Bei der Berechnung der \(z\)-Transformierten müssen teilweise Bedingungen an die Variable \(z\) gestellt werden, um die Konver-
5.1 Grundlagen der z-Transformation

genz der Reihe sicherzustellen. Das führt zu der Frage, unter welchen Bedingungen die z-Transformierte \(X(z) \) mit der Definitionsgleichung

\[
X(z) = \sum_{k=0}^{\infty} x[k] \cdot z^{-k}
\]

existiert. Zur Untersuchung der Konvergenz dieser unendlichen Reihe wird die Folge \(x[k] \) mithilfe einer Exponentialfolge nach oben abgeschätzt.

\[
|x[k]| \leq M \cdot r^k
\]

Konvergiert die resultierende geometrische Reihe, existiert auch ihre z-Transformierte \(X(z) \). Mit der Abschätzung der Folge \(x[k] \) gilt für \(X(z) \)

\[
X(z) = \sum_{k=0}^{\infty} x[k] \cdot z^{-k} \leq \sum_{k=0}^{\infty} M \cdot r^k \cdot z^{-k} = M \cdot \sum_{k=0}^{\infty} \left(\frac{r}{|z|}\right)^k
\]

Damit existiert die z-Transformierte, wenn für den Betrag der Basis gilt:

\[
\left|\frac{r}{|z|}\right| < 1
\]

Diese Bedingung erfüllen alle Werte der z-Ebene, die außerhalb des Kreises mit dem Radius \(r \) liegen. Bild 5.1 zeigt den Konvergenzbereich in der komplexen z-Ebene.

Im(z)

Re(z)

Konvergenz-

bereich

|z| > r

\[r \]

Bild 5.1: Konvergenzbereich der z-Transformierten \(X(z) \) einer Folge \(x[k] \)

In praktischen Anwendungen können Signalfolgen mit einer Exponentialfolge nach oben abgeschätzt werden, sodass die Konvergenz in den meisten Fällen gegeben ist.

5.1.4 Zusammenhang zwischen z-Transformation und Laplace-Transformation

Mithilfe der Laplace-Transformation lassen sich einige Signaleigenschaften bestimmen. Um an diese Interpretationsmöglichkeiten anzuknüpfen, wird ein Zusammenhang zwischen der s-Ebene der Laplace-Transformation und der z-Ebene der z-Transformation hergestellt. Bei der Herleitung der z-Transformation wird die Substitution
Die imaginäre Achse der s-Ebene $s = j \omega$ wird abgebildet in die Variable

$$z = e^{j\omega T_A}$$

(5.31)

Das entspricht dem Einheitskreis, der für $-\infty < \omega < \infty$ periodisch in 2π durchlaufen wird. Die imaginäre Achse der s-Ebene wird demnach auf den Einheitskreis der z-Ebene abgebildet. Bei der Abtastung von Signalen entsteht ein Spektrum, das periodisch in ω_A ist. Das Basisband reicht dabei von $-\omega_A/2$ bis $+\omega_A/2$, so dass der Einheitskreis genau einmal durchlaufen wird. Alle periodischen Wiederholungen des Spektrums werden mit der z-Transformation auf dem Einheitskreis übereinander abgebildet. Deshalb eignet sich die z-Transformation besonders für die Beschreibung abgetasteter Signale.

Eine Linie der s-Ebene mit konstantem Realteil δ_0 wird auf einen Kreis abgebildet, der einen Radius

$$|z| = \left| e^{(\delta_0 + j\omega)T_A} \right| = |e^{\delta_0 T_A}| |e^{j\omega T_A}| = e^{\delta_0 T_A}$$

(5.32)
5.1 Grundlagen der z-Transformation

<table>
<thead>
<tr>
<th>s-Ebene</th>
<th>z-Ebene</th>
</tr>
</thead>
<tbody>
<tr>
<td>imaginäre Achse</td>
<td>Einheitskreis</td>
</tr>
<tr>
<td>linke komplexe Ebene</td>
<td>Inneres des Einheitskreises</td>
</tr>
<tr>
<td>rechte komplexe Ebene</td>
<td>Äußeres des Einheitskreises</td>
</tr>
<tr>
<td>Ursprung $s = 0$</td>
<td>$z = 1$</td>
</tr>
<tr>
<td>halbe Abtastfrequenz $\frac{j \cdot \omega}{2}$ $\pm j \cdot k \cdot \omega$</td>
<td>$z = -1$</td>
</tr>
</tbody>
</table>

Der Zusammenhang zwischen s- und z-Ebene wird bei der Diskussion der Signal- und Systemeigenschaften in den folgenden Abschnitten wieder aufgegriffen.

5.1.5 Pollage und komplexe Exponential-Folge

Im vorangegangenen Abschnitt wird die z-Transformierte der Exponentialfolge

$$x[k] = \lambda^k \cdot \sigma[k]$$

berechnet zu

$$X(z) = \frac{z}{z - \lambda_0}$$

Aus Gleichung (5.34) kann der zu der komplexen Exponentialfolge zugehörige Pol λ_0 in der komplexen z-Ebene abgelesen werden. Liegt der Pol auf der reellen Achse, handelt es sich um eine reelle Folge, die bei negativem Realteil alternierend ist. Für einen Betrag von $|\lambda_0| < 1$ ist die Folge konvergent, für $|\lambda_0| > 1$ ist die Folge divergent und für $|\lambda_0| = 1$ bleibt der Betrag der Folge konstant. Die Lage eines Poles in der z-Ebene kann damit einem Signalverhalten zugeordnet werden, das in Tabelle 5.2 skizziert wird.
Tabelle 5.2: Zusammenhang zwischen Pollage und Signalfolge bei reellen Polen

<table>
<thead>
<tr>
<th>Pollage X(z)</th>
<th>Signalfolge x[k]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pollage X(z)</th>
<th>Signalfolge x[k]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pollage X(z)</th>
<th>Signalfolge x[k]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pollage X(z)</th>
<th>Signalfolge x[k]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pollage X(z)</th>
<th>Signalfolge x[k]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pollage X(z)</th>
<th>Signalfolge x[k]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pollage X(z)</th>
<th>Signalfolge x[k]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pollage X(z)</th>
<th>Signalfolge x[k]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pollage X(z)</th>
<th>Signalfolge x[k]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pollage X(z)</th>
<th>Signalfolge x[k]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Liegen z-Transformierte mit konjugiert komplexem Polpaare der Form

\[X(z) = \frac{z}{z - r_0 \cdot e^{i\Omega_0}} + \frac{z}{z - r_0 \cdot e^{-i\Omega_0}} \]
(5.35)

vor, handelt es sich im Zeitbereich um Folgen der Form

\[x[k] = r_0^k \cdot (e^{i\Omega_0 k} + e^{-i\Omega_0 k}) \cdot \sigma[k] = 2 \cdot r_0^k \cdot \cos(\Omega_0 \cdot k) \cdot \sigma[k] \]
(5.36)

Für einen Betrag von \(|r_0| < 1\) ist die Folge konvergent, für \(|r_0| > 1\) ist die Folge divergent und für \(|r_0| = 1\) bleibt der Betrag der Folge konstant. Die Frequenz steigt mit wachsender Phase \(\Omega_0\) des Pols, das Maximum wird erreicht für Pole mit einer Phase \(\Omega_0 = \pm \pi\). Diese Interpretation entspricht bei entsprechender Umrechnung der Pole dem Zusammenhang zwischen der Pollage in der s-Ebene und der zughörrigen Zeitfunktion. Die Lage eines Poles in der z-Ebene kann damit einem Signalverhalten zugeordnet werden, das in Tabelle 5.3 skizziert wird.

Tabelle 5.3: Zusammenhang zwischen Pollage und Signalfolge bei konjugiert komplexen Polpaaren

<table>
<thead>
<tr>
<th>Pollage X(z)</th>
<th>Signalfolge x[k]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Im Online-Portal *Systemtheorie Online* verdeutlicht die Applikation *Komplexe Exponentialfolge* den Zusammenhang zwischen der Pollage in der komplexen Ebene und dem Verhalten der Signalfolge.
5.2 Rechenregeln der z-Transformation

Wie bei den bisher vorgestellten Transformationen besitzt die z-Transformation Rechenregeln, die das Rechnen und die Berechnung weiterer Korrespondenzen vereinfachen. Sie werden hergeleitet und ihr Nutzen an Beispielen verdeutlicht.

5.2.1 Linearität

Wie die Laplace- und die Fourier-Transformation ist auch die z-Transformation eine lineare Transformation. Durch Einsetzen in die Definitionsgleichung

\[
\mathcal{Z}\{v_1 \cdot x_1[k] + v_2 \cdot x_2[k]\} = \sum_{k=0}^{\infty} (v_1 \cdot x_1[k] + v_2 \cdot x_2[k]) \cdot z^{-k}
\]

(5.37)

und durch Anwendung des Distributivgesetzes

\[
\sum_{k=0}^{\infty} (v_1 \cdot x_1[k] + v_2 \cdot x_2[k]) \cdot z^{-k} = \sum_{k=0}^{\infty} v_1 \cdot x_1[k] \cdot z^{-k} + \sum_{k=0}^{\infty} v_2 \cdot x_2[k] \cdot z^{-k} = v_1 \cdot X_1(z) + v_2 \cdot X_2(z)
\]

(5.38)

wird die Linearitätseigenschaft bewiesen.

Beispiel: Linearität

Gesucht wird die z-Transformierte der Folge \(x[k]\)

\[x[k] = 2 \cdot \sigma[k] + 5 \cdot 3^k \cdot \sigma[k]\]

(5.39)

Die z-Transformierten der Sprung- und Exponentialfolge sind bekannt. Damit ergibt sich \(X(z)\) zu

\[X(z) = 2 \cdot \frac{z}{z-1} + 5 \cdot \frac{z}{z-3}\]

(5.40)

5.2.2 Verschiebung der Folge nach rechts

Bereits bei der Herleitung der verschobenen Impuls- und Sprungfolge wird die Verschiebungsregel der z-Transformation angedeutet. Die allgemeine Herleitung für eine Zeitverschiebung nach rechts ergibt sich für den Fall, dass \(x[k]\) eine kausale Folge ist, aus

\[
\mathcal{Z}\{x[k-k_0]\} = \sum_{k=0}^{\infty} x[k-k_0] \cdot z^{-k} = \sum_{k=k_0}^{\infty} x[k] \cdot z^{-(k+k_0)} = z^{-k_0} \cdot \sum_{k=0}^{\infty} x[k] \cdot z^{-k}
\]

(5.41)

5.2 Rechenregeln der z-Transformation

Beispiel: Verschiebung nach rechts
Eine Rechteckfolge von 0 bis 4 kann im Zeitbereich dargestellt werden als
\[x[k] = \sigma[k] - \sigma[k-5] \]
(5.42)
Daraus ergibt sich mit der Verschiebungsregel die z-Transformierte zu
\[X(z) = \frac{z}{z-1} \left(1 - z^{-5}\right) \]
(5.43)

5.2.3 Verschiebung der Folge nach links
Die Regel zur Verschiebung nach links kann ähnlich hergeleitet werden wie die Regel zur Verschiebung nach rechts.
\[Z\{x[k + k_0]\} = \sum_{k=0}^{\infty} x[k + k_0] \cdot z^{-k} = z^{k_0} \cdot \sum_{k=0}^{\infty} x[k + k_0] \cdot z^{-(k+k_0)} = z^{k_0} \cdot \sum_{k=0}^{\infty} x[k] \cdot z^{-k} \]
(5.44)
Um die Summe bei k = 0 beginnen zu lassen, müssen einige Summanden addiert und wieder subtrahiert werden. Damit ergibt sich die Verschiebungsregel für eine Verschiebung nach links.
\[Z\{x[k + k_0]\} = z^{k_0} \cdot \sum_{k=0}^{k_0-1} x[k] \cdot z^{-k} + z^{k_0} \cdot \sum_{k=k_0}^{\infty} x[k] \cdot z^{-k} - z^{k_0} \cdot \sum_{k=0}^{\infty} x[k] \cdot z^{-k} = z^{k_0} \cdot X(z) - z^{k_0} \cdot \sum_{k=0}^{\infty} x[k] \cdot z^{-k} \]
(5.45)

Bei der Diskussion von Systemen im z-Bereich wird sich zeigen, dass sich diese Verschiebungsregel zur Lösung von Differenzengleichungen mit Anfangsbedingungen eignet.

Beispiel: Verschiebung nach links
Die Differenzengleichung
\[x[k] - 0.5 \cdot x[k-1] = 0 \]
(5.46)
soll für den Anfangswert x[0] = 5 gelöst werden. Dazu wird die Differenzengleichung umgeformt zu
\[x[k+1] - 0.5 \cdot x[k] = 0 \]
(5.47)
und die Verschiebungsregel angewendet.
\[z^1 \cdot X(z) - x[0] \cdot z^1 + 0.5 \cdot X(z) = 0 \]
(5.48)
Auflösen nach X(z) führt zu der z-Transformierten
\[X(z) = \frac{z \cdot x[0]}{z + 0.5} = \frac{z \cdot 5}{z + 0.5} \]
(5.49)
Mithilfe der bereits diskutierten Rechenregeln kann die z-Transformierte in den Zeitbereich zurück-transformiert werden.

\[x[k] = 5 \cdot (-0.5)^k \cdot \sigma[k] \] \hspace{1cm} (5.50)

5.2.4 Modulation

Eine Modulation einer Folge \(x[k] \) mit der Exponentialfolge \(\lambda^k \) lässt sich im z-Bereich darstellen als

\[
\mathcal{Z}\{\lambda^k \cdot x[k]\} = \sum_{k=0}^{\infty} \lambda^k \cdot x[k] \cdot z^{-k} = \sum_{k=0}^{\infty} x[k] \left(\frac{z}{\lambda} \right)^k = X\left(\frac{z}{\lambda} \right)
\]

\hspace{1cm} (5.51)

Beispiel: Modulation

Die Modulationsregel kann zum Nachweis der z-Transformierten der Exponentialfolge angewendet werden. Die z-Transformierte der Sprungfolge ist bekannt. Die Exponentialfolge ergibt sich aus

\[x[k] = \lambda^k \cdot \sigma[k] \] \hspace{1cm} (5.52)

Nach der Modulationsregel ist damit die z-Transformierte der Exponentialfolge

\[X(z) = \frac{z}{z - \frac{1}{\lambda}} \]

\hspace{1cm} (5.53)

5.2.5 Lineare Gewichtung

Die Eigenschaft der linearen Gewichtung ergibt sich durch Ableitung der z-Transformierten.

\[
\frac{dX}{dz} = \frac{d}{dz} \sum_{k=0}^{\infty} x[k] \cdot z^{-k} = -k \cdot \sum_{k=0}^{\infty} x[k] \cdot z^{-k-1} - z^{-1} \cdot \sum_{k=0}^{\infty} k \cdot x[k] \cdot z^{-k}
\]

\hspace{1cm} (5.54)

Multiplikation der Gleichung mit \(-z\) führt zu der gesuchten Rechenregel der linearen Gewichtung.

\[\mathcal{Z}\{k \cdot x[k]\} = \sum_{k=0}^{\infty} k \cdot x[k] \cdot z^{-k} = -z \cdot \frac{dX}{dz} \]

\hspace{1cm} (5.55)
5.2 Rechenregeln der z-Transformation

Beispiel: Gewichtung

Die lineare Gewichtung wird dazu verwendet, die z-Transformierte der Rampenfolge

\[x[k] = k \cdot \sigma[k] \quad \text{(5.56)} \]

to berechnen. Mit der Regel für die lineare Gewichtung und der z-Transformierten der Sprungfolge ergibt sich

\[X(z) = -z \cdot \frac{d}{dz} \frac{z}{z-1} = -z \cdot \frac{z-1-z}{(z-1)^2} = \frac{z}{(z-1)^2} \quad \text{(5.57)} \]

5.2.6 Differenz

Die Differenz zweier aufeinanderfolgender Werte entspricht der Ableitung im zeitkontinuierlichen Bereich. Ihre z-Transformierte ergibt sich direkt aus dem Verschiebungssatz zu

\[z \{x[k] - x[k-1]\} = (1 - z^{-1}) \cdot X(z) = \frac{z-1}{z} \cdot X(z) \quad \text{(5.58)} \]

Beispiel: Differenz

Die Impulsfolge kann dargestellt werden als Differenz zweier Sprungfolgen:

\[\delta[k] = \sigma[k] - \sigma[k-1] \quad \text{(5.59)} \]

Damit ergibt sich ihre z-Transformierte zu

\[X(z) = \frac{z-1}{z} \cdot \frac{z}{z-1} = 1 \quad \text{(5.60)} \]

Das Ergebnis stimmt mit der Berechnung über die Definitionsgleichung überein.

5.2.7 Summation

Dem Integral für zeitkontinuierliche Funktionen entspricht bei Folgen die Summation. Zum Beweis der Summationsregel wird die Folge \(x[k] \) dargestellt als Differenz zweier Summen:

\[x[k] = \sum_{k=0}^{\infty} x[k] - \sum_{k=0}^{\infty} x[k] \quad \text{(5.61)} \]

Die z-Transformation der Gleichung ergibt

\[X(z) = (1 - z^{-1}) \cdot z \left(\sum_{k=0}^{\infty} x[k] \right) = \frac{z-1}{z} \cdot z \left(\sum_{k=0}^{\infty} x[k] \right) \quad \text{(5.62)} \]

Durch Umstellen ergibt sich die Summationsregel der z-Transformation.
\[Z \left\{ \sum_{\kappa=0}^{k} x[k] \right\} = \frac{Z}{Z-1} \cdot X(z) \]
(5.63)

Beispiel: Summation

Die Sprungfolge kann als Summe über die Impulsfolge dargestellt werden.

\[\sigma[k] = \sum_{\kappa=0}^{k} \delta[k] \]
(5.64)

Entsprechend ist der Zusammenhang zwischen den beiden z-Transformierten

\[Z \{ \sigma[k] \} = Z \left\{ \sum_{\kappa=0}^{k} \delta[k] \right\} = 1 \cdot \frac{Z}{Z-1} = \frac{Z}{z-1} \]
(5.65)

Auch die Rampenfolge lässt sich als Summe über die Sprungfolge beschreiben. Dabei ist zu beachten, dass die Rampenfolge für \(k = 0 \) den Wert 0 besitzt. Damit ergibt sich für die Summe der Startwert \(k = 1 \) und die Summenformel der Rampenfolge lautet

\[x[k] = \sum_{\kappa=0}^{k} \sigma[k-1] \]
(5.66)

Mit der Summations- und Verschiebungsregel ergibt sich die z-Transformierte zu

\[X(z) = \frac{Z}{z-1} \cdot z^{-1} \cdot \frac{Z}{z-1} = \frac{Z}{(z-1)^2} \]
(5.67)

Das Ergebnis stimmt mit der Berechnung über die lineare Gewichtung überein.

5.2.8 Multiplikation

Die Multiplikationsregel wird im folgenden Abschnitt mithilfe der Rücktransformation hergeleitet. Sie wird hier der Vollständigkeit halber aufgeführt.

\[Z \{ x[k] \cdot y[k] \} = \frac{1}{2 \cdot \pi \cdot j} \cdot \int \frac{Z}{v} \cdot X(v) \cdot v^{-1} \, dv \]
(5.68)

5.2.9 Faltung

Der Faltungssatz ist für die Berechnung von Systemantworten von großer Bedeutung und wird ausführlich in Kapitel 8 behandelt. Die z-Transformierte der Faltung zweier Folgen ergibt sich durch Einsetzen in die Definitionsgleichung der z-Transformation zu

\[Z \{ g[k] \ast x[k] \} = Z \left\{ \sum_{\kappa=0}^{\infty} g[k] \cdot x[k-k] \right\} = \sum_{k=0}^{\infty} \sum_{\kappa=0}^{\infty} g[k] \cdot x[k-k] \cdot z^{-k} \]
(5.69)

Vertauschen der Summationsreihenfolge und Substitution ergibt
5.2 Rechenregeln der z-Transformation

\[
\sum_{k=0}^{\infty} \sum_{\kappa=0}^{\infty} x[\kappa] \cdot g[k-\kappa] \cdot z^k = \sum_{k=0}^{\infty} x[k] \cdot g[k-\kappa] \cdot z^k
\]

\[
= \sum_{k=0}^{\infty} x[k] \cdot z^{-\kappa} \cdot \sum_{k=0}^{\infty} g[k-\kappa] \cdot z^{-(k-\kappa)}
\]

(5.70)

\[
= \sum_{k=0}^{\infty} x[k] \cdot z^{-\kappa} \cdot \sum_{n=0}^{\infty} g[n] \cdot z^n = G(z) \cdot X(z)
\]

Diese Rechenregel wird bei der Diskussion zeitdiskreter Systeme im Bildbereich aufgegriffen.

5.2.10 Anfangswertsatz

Analog zu den Grenzwertsätzen der Laplace-Transformation ergeben sich Anfangs- und Endwertsätze der z-Transformation. Die Definitionsungleichung der z-Transformation lautet

\[
X(z) = \sum_{k=0}^{\infty} x[k] \cdot z^{-k} = x[0] + x[1] \cdot z^{-1} + x[2] \cdot z^{-2} + ... \quad (5.71)
\]

Im Grenzfall \(z \rightarrow \infty \) werden alle Summanden, die einen Faktor \(z^{-k} \) mit \(k > 0 \) besitzen, zu null. Übrig bleibt demnach der Ausdruck

\[
x[0] = \lim_{z \rightarrow \infty} X(z) \quad (5.72)
\]

Da bei der Herleitung des Anfangswertsatzes keine Einschränkung gemacht wird, kann diese Regel immer angewendet werden.

Beispiel: Anfangswertsatz

Die kausale Exponentialfolge besitzt die z-Transformierte

\[
X(z) = \frac{z}{z-\lambda_0} \quad (5.73)
\]

Für den Grenzübergang \(z \rightarrow \infty \) ergibt sich der Anfangswert zu

\[
\lim_{z \rightarrow \infty} X(z) = \lim_{z \rightarrow \infty} \frac{z}{z-\lambda_0} = \lim_{z \rightarrow \infty} \frac{1}{1 - \frac{\lambda_0}{z}} = 1 \quad (5.74)
\]

Das Ergebnis stimmt mit dem Wert \(x[0] \) im Zeitbereich überein.

5.2.11 Endwertsatz

Zur Berechnung des Grenzwertes der Folge \(x[k] \) für \(k \to \infty \) wird vorausgesetzt, dass dieser Grenzwert existiert. Zur Herleitung des Endwertsatzes wird die \(z \)-Transformierte \(X(z) \) des Signals \(x[k] \) dargestellt als ein Produkt zweier \(z \)-Transformierter

\[
X(z) = \frac{Z}{Z-1} \cdot Y(z) \quad (5.75)
\]

Diese Gleichung kann mit der Faltungsregel in den Zeitbereich transformiert werden.

\[
x[k] = \sum_{\kappa=0}^{\infty} y[\kappa] \cdot \sigma[k-\kappa] = \sum_{\kappa=0}^{k} y[\kappa] \quad (5.76)
\]

Für den Grenzwert \(k \to \infty \) kann die Summe dargestellt werden als

\[
\lim_{k \to \infty} x[k] = \sum_{\kappa=0}^{\infty} y[\kappa] \cdot 1^\kappa = Y(1) = \lim_{z \to 1} \frac{Z-1}{Z} \cdot X(z) = \lim_{z \to 1} (z-1) \cdot X(z) \quad (5.77)
\]

Mit der Definitionsgleichung der \(z \)-Transformation

\[
Y(z) = \sum_{k=0}^{\infty} y[k] \cdot z^{-k} \quad (5.78)
\]

ergibt sich für \(z = 1 \) der Endwertsatz der \(z \)-Transformation

\[
\lim_{k \to \infty} x[k] = \sum_{k=0}^{\infty} h[k] \cdot 1^k = H(1) = \lim_{z \to 1} \frac{Z-1}{Z} \cdot X(z) = \lim_{z \to 1} (z-1) \cdot X(z) \quad (5.79)
\]

Beispiel: Endwertsatz

Die kausale Exponentialfolge besitzt die \(z \)-Transformierte

\[
X(z) = \frac{Z}{Z-\lambda_0} \quad (5.80)
\]

Mit dem Grenzübergang \(z \to 1 \) des Ausdrucks

\[
\lim_{z \to 1} (z-1) \cdot \frac{Z}{Z-\lambda_0} = 0 \quad (5.81)
\]

ergibt sich der Endwert von \(x[k] \) für \(k \to \infty \) zu null. Das Ergebnis stimmt mit dem Grenzwert im Zeitbereich überein, wenn die Basis \(\lambda_0 \) einen Betrag \(|\lambda_0| < 1 \) aufweist, also wenn ein Grenzwert existiert.
5.2.12 Zusammenfassung der Rechenregeln zur z-Transformation

Zur besseren Übersicht stellt Tabelle 5.4 die wesentlichen Eigenschaften der z-Transformation noch einmal zusammen.

Tabelle 5.4: Rechenregeln der z-Transformation

<table>
<thead>
<tr>
<th>Regel</th>
<th>Folge $x[k]$</th>
<th>z-Transformierte $X(z)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linearität</td>
<td>$v_1 \cdot x_1[k] + v_2 \cdot x_2[k]$</td>
<td>$v_1 \cdot X_1(z) + v_2 \cdot X_2(z)$</td>
</tr>
<tr>
<td>Zeitverschiebung nach rechts</td>
<td>$x[k - k_0]$ für $k_0 > 0$</td>
<td>$z^{-k_0} \cdot X(z)$</td>
</tr>
<tr>
<td>Zeitverschiebung nach links</td>
<td>$x[k + k_0]$ für $k_0 > 0$</td>
<td>$z^{k_0} \cdot X(z) - z^{k_0} \sum_{n=0}^{k_0-1} x[n] \cdot z^{-n}$</td>
</tr>
<tr>
<td>Modulation</td>
<td>$\lambda^k \cdot x[k]$</td>
<td>$X\left(\frac{z}{\lambda}\right)$</td>
</tr>
<tr>
<td>lineare Gewichtung</td>
<td>$k \cdot x[k]$</td>
<td>$-z \cdot \frac{d}{dz} X(z)$</td>
</tr>
<tr>
<td>Differenz</td>
<td>$x[k] - x[k-1]$</td>
<td>$\frac{z - 1}{z} \cdot X(z)$</td>
</tr>
<tr>
<td>Summation</td>
<td>$\sum_{k=0}^{k} x[k]$</td>
<td>$\frac{z}{z-1} \cdot X(z)$</td>
</tr>
<tr>
<td>Multiplikation</td>
<td>$x_1[k] \cdot x_2[k]$</td>
<td>$\frac{1}{2 \cdot \pi \cdot j} \int X_1\left(\frac{z}{v}\right) \cdot X_2(v) \cdot v^{-1} dv$</td>
</tr>
<tr>
<td>Faltung</td>
<td>$g[k] \ast x[k]$</td>
<td>$G(z) \cdot X(z)$</td>
</tr>
<tr>
<td>Anfangswert</td>
<td>$x[0]$</td>
<td>$\lim_{z \to \infty} X(z)$</td>
</tr>
<tr>
<td>Endwert</td>
<td>$\lim_{k \to \infty} x[k]$</td>
<td>$\lim_{z \to 1} (z-1) \cdot X(z)$</td>
</tr>
</tbody>
</table>
5.2.13 Korrespondenzen der z-Transformation

Die Rechenregeln zur z-Transformation erlauben die Berechnung weiterer Korrespondenzen. Tabelle 5.5 stellt wichtige Korrespondenzen der z-Transformation zusammen.

Tabelle 5.5: Korrespondenzen der z-Transformation 1/2

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Folge x[k]</th>
<th>z-Transformierte X(z)</th>
<th>Konvergenzbereich</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>δ[k]</td>
<td>1</td>
<td>beliebig</td>
</tr>
<tr>
<td>2</td>
<td>σ[k]</td>
<td>z/(z-1)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>k·σ[k]</td>
<td>z/(z-1)^2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>k^2·σ[k]</td>
<td>z·(z+1)/(z-1)^3</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>λ^k·σ[k]</td>
<td>z/(z-λ)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>λ auch komplex</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>k·λ^k·σ[k]</td>
<td>z·λ/(z-λ)^2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>λ auch komplex</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>k^2·λ^k·σ[k]</td>
<td>z·λ·(z+λ)/(z-λ)^3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>λ auch komplex</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>k^3·λ^k·σ[k]</td>
<td>z·λ·(z^2+4·λ·z+λ^2)/(z-λ)^3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>λ auch komplex</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>(k-1)!·λ^k·σ[k-n]</td>
<td>1/(z-λ)^n</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>λ auch komplex</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>sin(k·Ω_o)·σ[k]</td>
<td>z·sin(Ω_o)/(z^2-2·z·cos(Ω_o)+1)</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>cos(k·Ω_o)·σ[k]</td>
<td>z·(z-cos(Ω_o))/(z^2-2·z·cos(Ω_o)+1)</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1/k!·σ[k]</td>
<td>e^{z^2}</td>
<td></td>
</tr>
</tbody>
</table>
5.3 Rücktransformation

5.3.1 Definition der inversen z-Transformation

Die Berechnung einer Folge $x[k]$ aus ihrer z-Transformierten ergibt sich ohne Beweis über ein Umlaufintegral [Foe103]

$$x[k] = \frac{1}{2\pi j} \int X(z) \cdot z^{-k} \, dz$$ \hspace{1cm} (5.82)

Gleichung (5.82) zur inversen z-Transformation wird an dieser Stelle genutzt, um die Rechenregel zur Multiplikation von Folgen zu beweisen. Die z-Transformierte ist definiert als

$$X[k] \cdot Y[k] = \sum_{k=0}^{\infty} x[k] \cdot y[k] \cdot z^{-k}$$ \hspace{1cm} (5.83)

Wird die Folge $x[k]$ als Umlaufintegral ausgedrückt, ergibt sich

$$\sum_{k=0}^{\infty} x[k] \cdot y[k] \cdot z^{-k} = \frac{1}{2\pi j} \int \left(\sum_{k=0}^{\infty} X(v) \cdot v^{-k} \, dv \right) \cdot y[k] \cdot z^{-k}$$

$$= \frac{1}{2\pi j} \int y[k] \cdot X(v) \cdot v^{-1} \cdot \left(\frac{z}{v} \right)^{-k} \, dv$$ \hspace{1cm} (5.84)

Mit einigen Umformungen kann die Modulationsregel angewendet werden

$$\sum_{k=0}^{\infty} x[k] \cdot y[k] \cdot z^{-k} = \frac{1}{2\pi j} \cdot \sum_{k=0}^{\infty} \left(\sum_{v=0}^{\infty} Y[v] \cdot X(v) \cdot v^{-1} \cdot \left(\frac{z}{v} \right)^{-k} \right) \, dv$$

$$= \frac{1}{2\pi j} \cdot \int Y[v] - X(v) \cdot v^{-1} \, dv$$ \hspace{1cm} (5.85)

Dami ist die Multiplikationsregel hergeleitet. Wie bereits bei der inversen Laplace-Transformation wird die Definition der Rücktransformation aber in der Praxis nicht verwendet. Stattdessen wird die Funktion $X(z)$ so umgeformt, dass bekannte Korrespondenzen genutzt werden können. Dieser Ansatz führt zur Rücktransformation über eine Partialbruchzerlegung oder über einen Potenzreihenansatz.
5.3.2 Rücktransformation über Partialbruchzerlegung

In den bisher behandelten Beispielen und Rechenregeln sind immer gebrochen rationale Funktionen der Form

\[
X(z) = \frac{B(z)}{A(z)} = \frac{\sum_{m=0}^{M} b_m \cdot z^m}{\sum_{n=0}^{N} a_n \cdot z^n} = \frac{b_M}{a_n} \cdot \prod_{m=1}^{M} \left(z - \beta_m \right) \cdot \prod_{n=1}^{N} \left(z - \alpha_n \right)
\]

(5.86)

entstanden. Da es sich bei \(x[k] \) um ein kausales Signal handelt, ist der Zählergrad \(M \) maximal so groß wie der Nennergrad \(N \) (\(M \leq N \)). Die Koeffizienten \(a_n \) und \(b_m \) sind reelle Koeffizienten. Damit sind die Polstellen \(\alpha_n \) und Nullstellen \(\beta_m \) von \(X(z) \) entweder reell oder konjugiert komplex zueinander.

Diese gebrochen rationale Funktionen \(X(z) \) lassen sich nur in seltenen Fällen direkt über eine bekannte Korrespondenz zurücktransformieren. Im Allgemeinen ist eine Zerlegung der Funktion mit der Partialbruchzerlegung notwendig. Nach der Zerlegung liegen einzelne Partialbrüche vor, die auf bekannte Korrespondenzen zurückgeführt werden können.

Vorbereitung der Partialbruchzerlegung falls Zählergrad \(M \) gleich Nennergrad \(N \)

Falls der Zählergrad \(M \) und der Nennergrad \(N \) gleich groß sind, muss vor der Partialbruchzerlegung eine Polynomdivision durchgeführt werden. Dadurch entsteht ein konstanter Summand

\[
X_0 = \frac{b_M}{a_n}
\]

(5.87)

Da die inverse \(z \)-Transformierte zu einer Konstanten die Impulsfolge ist, entspricht diesem Summanden im Zeitbereich der Folgenwert für \(k = 0 \)

\[
x[k] = \frac{b_M}{a_n} \cdot \delta[k]
\]

(5.88)

Das folgende Beispiel verdeutlicht diesen Zusammenhang.

Beispiel: Zählergrad gleich Nennergrad

Die \(z \)-Transformierte \(X(z) \) soll in den Zeitbereich zurück transformiert werden. Da der Zählergrad genauso groß ist wie der Nennergrad, wird eine Polynomdivision durchgeführt. Um auf einen Ausdruck der Korrespondenztabelle zu kommen, muss der Restbruch mit \(z \) erweitert werden.

\[
X(z) = \frac{2 \cdot z - 3}{z - 3} = 2 + \frac{3}{z - 3} = 2 + 3 \cdot \frac{z}{z - 3} \cdot z^{-1}
\]

(5.89)

Damit kann die Folge im Zeitbereich aus der Korrespondenztabelle und der Verschiebungsregel bestimmt werden zu

\[
x[k] = 2 \cdot \delta[k] + 3 \cdot 3^{k-1} \cdot \sigma[k - 1]
\]

(5.90)
Partialbruchzerlegung für einfache Pole bei \(z \neq 0 \)

Besitzt die \(z \)-Transformierte \(X(z) \) nur einfache Pole, kann sie mithilfe der Partialbruchzerlegung dargestellt werden als

\[
X(z) = \frac{1}{a_N} \cdot \sum_{m=0}^{M} b_m \cdot z^m = \sum_{n=1}^{N} \frac{A_n}{z - \alpha_n}
\]

(5.91)

Die Koeffizienten \(A_n \) der einzelnen Partialbrüche können wie bei der Laplace-Transformation auf unterschiedliche Arten berechnet werden:

- Ausmultiplizieren
 Die Gleichung wird mit den Polstellen multipliziert. Anschließend werden die Polstellen eingesetzt, und es ergibt sich ein Gleichungssystem für die Koeffizienten \(A_n \).

- Residuensatz
 Die einzelnen Koeffizienten werden über den Residuensatz berechnet, der grundsätzlich auf dem gleichen Verfahren basiert

\[
A_n = \left. \left(X(z) \cdot (z - \alpha_n) \right) \right|_{z=\alpha_n}
\]

(5.92)

Jeder einzelne Partialbruch hat die Form

\[
X_n(z) = \frac{A_n}{z - \alpha_n} = A_n \cdot \frac{z}{z - \alpha_n} \cdot z^{-1}
\]

(5.93)

Im Zeitbereich ergibt sich damit für jeden Partialbruch eine kausale Exponentialfolge, die um einen Folgenindex nach rechts verschoben ist:

\[
x_n[k] = z^{-1} \left\{ \frac{A_n}{z - \alpha_n} \right\} = A_n \cdot \alpha_n^{k-1} \cdot \sigma[k - 1]
\]

(5.94)

Die Summe der einzelnen Partialbrüche entspricht deshalb im Zeitbereich der Folge

\[
z^{-1} \left\{ \sum_{n=1}^{N} \frac{A_n}{z - \alpha_n} \right\} = \sum_{n=1}^{N} A_n \cdot \alpha_n^{k-1} \cdot \sigma[k - 1]
\]

(5.95)

Beispiel: Partialbruchzerlegung für einfache Pole bei \(z \neq 0 \)

Die \(z \)-Transformierte \(X(z) \) soll in den Zeitbereich zurücktransformiert werden. Ihr Zählergrad ist kleiner als der Nennergrad, und sie hat zwei einfache Pole.

\[
X(z) = \frac{z}{z^2 + 3 \cdot z + 2} = \frac{z}{(z + 1) \cdot (z + 2)} = \frac{A_1}{z + 1} + \frac{A_2}{z + 2}
\]

(5.96)

Ausmultiplizieren der Gleichung führt zu

\[
z = A_1 \cdot (z + 2) + A_2 \cdot (z + 1)
\]

(5.97)
Einsetzen der Polstellen $\alpha_1 = -1$ und $\alpha_2 = -2$ führt zu

$A_1 = -1 \quad (5.98)$

und

$A_2 = 2 \quad (5.99)$

Alternativ hätte der Residuensatz ergeben

$A_1 = \left(\frac{z}{(z+1)(z+2)} \right)_{z=-1} = \left(\frac{z}{z+2} \right)_{z=-1} = \frac{-1}{-1+2} = -1 \quad (5.100)$

und

$A_2 = \left(\frac{z}{(z+1)(z+2)} \right)_{z=-2} = \left(\frac{z}{z+1} \right)_{z=-2} = \frac{-2}{-2+1} = 2 \quad (5.101)$

Sind die Koeffizienten der Partialbrüche bestimmt, kann die z-Transformierte mit den bekannten Korrespondenzen in den Zeitbereich zurücktransformiert werden.

$X(z) = \frac{-1}{z+1} + \frac{2}{z+2} = \frac{-z}{z+1} \cdot z^{-1} + \frac{2 \cdot z}{z+2} \cdot z^{-1} \quad (5.102)$

Es ergibt sich die Folge

$x[k] = -1 \cdot (-1)^{k-1} \cdot \sigma[k-1] + 2 \cdot (-2)^{k-1} \cdot \sigma[k-1] \quad (5.103)$
Partialbruchzerlegung für mehrfache Pole bei \(z \neq 0 \)

Liegt ein \(P \)-facher Pol an der Stelle \(\alpha \) vor, muss der Teil der \(z \)-Transformierten dargestellt werden als

\[
X(z) = \frac{B(z)}{(z - \alpha)^P} = \sum_{n=1}^{P} \frac{A_n}{(z - \alpha)^n}
\]

(5.104)

Die Koeffizienten \(A_n \) der einzelnen Partialbrüche können wieder auf unterschiedliche Arten berechnet werden:

- Ausmultiplizieren
 Die Gleichung wird mit den Polstellen multipliziert. Anschließend wird die Polstelle und \(P - 1 \) weitere Werte für \(z \) eingesetzt, und es ergibt sich ein Gleichungssystem für die Koeffizienten \(A_n \).

- Residuensatz
 Die einzelnen Koeffizienten werden über den Residuensatz berechnet

\[
A_n = \frac{1}{(P-n)!} \left. \frac{d^{P-n} X(z) \cdot (z - \alpha)^P}{dz^{P-n}} \right|_{z=\alpha}
\]

(5.105)

Die Rücktransformation kann mit Korrespondenz 9 angegeben werden zu

\[
x[k] = \sum_{n=1}^{P} A_n \cdot \binom{k-1}{n-1} \cdot \alpha^{k-n} \cdot \sigma[k-n]
\]

(5.106)

Beispiel: Partialbruchzerlegung für mehrfache Pole bei \(z \neq 0 \)

Die \(z \)-Transformierte \(X(z) \) soll in den Zeitbereich zurücktransformiert werden. Ihr Zählergrad ist kleiner als der Nennergrad und sie hat einen doppelten Pol an der Stelle \(\alpha = 0.5 \). Damit lautet der Ansatz für die Partialbruchzerlegung

\[
X(z) = \frac{z}{(z - 0.5)^2} = \frac{A_1}{z - 0.5} + \frac{A_2}{(z - 0.5)^2}
\]

(5.107)

Ausmultiplizieren führt zu der Gleichung

\[
z = A_1 \cdot (z - 0.5) + A_2
\]

(5.108)

Einsetzen der Zahlenwerte \(z = 0.5 \) und \(z = 0 \) ergibt

\[
A_2 = 0.5
\]

(5.109)

und

\[
A_1 = 2 \cdot A_2 = 1
\]

(5.110)

Alternativ könnte der Residuensatz verwendet werden:
\[A_1 = \frac{d}{dz}(X(z) \cdot (z - 0.5)^2) \bigg|_{z=0.5} = \frac{dz}{dz}_{z=0.5} = 1 \]

(5.111)

und

\[A_2 = 1 \cdot X(z) \cdot (z - 0.5)^2 \bigg|_{z=z_c} = z_{z_c} = 0.5 \]

(5.112)

Die Funktion \(X(z)\) kann damit in folgende Partialbrüche aufgeteilt werden:

\[X(z) = \frac{z}{(z - 0.5)^2} = \frac{1}{z - 0.5} \cdot \frac{0.5}{(z - 0.5)^2} = \frac{z}{z - 0.5} \cdot z^{-1} + \frac{0.5 \cdot z}{(z - 0.5)^2} \cdot z^{-1} \]

(5.113)

Zur Rücktransformation werden die Korrespondenzen 5 und 6 sowie der Verschiebungssatz verwendet.

\[x[k] = 0.5^{k-1} \cdot \sigma[k - 1] + (k - 1) \cdot 0.5^{k-1} \cdot \sigma[k - 1] \]

(5.114)

Alternativ ist eine Rücktransformation mit Korrespondenz 9 möglich.

\[x[k] = \left(\begin{array}{c} k-1 \\ 0 \end{array} \right) \cdot 0.5^{k-1} \cdot \sigma[k - 1 - 1 + 1] + 0.5 \cdot \left(\begin{array}{c} k-1 \\ 1 \end{array} \right) \cdot 0.5^{k-1} \cdot \sigma[k - 1 - 2 + 1] \]

(5.115)

Da der zweite Summand für \(k = 1\) zu null wird, sind beide Lösungen identisch.

\[\textbf{Sonderfall N-facher Pol bei } z = 0 \]

Wenn nur Pole an der Stelle \(z = 0\) vorliegen, so sind alle Koeffizienten \(a_n = 0\) bis auf den Koeffizienten \(a_N\). Damit gilt

\[X(z) = \sum_{m=0}^{M} \frac{b_m}{a_n} \cdot z^m = \sum_{m=0}^{M} \frac{b_m}{a_n} \cdot z^{m-N} = \frac{b_0}{a_n} \cdot z^{-N} + \frac{b_1}{a_n} \cdot z^{-N+1} + \ldots + \frac{b_M}{a_n} \cdot z^{-N+M} \]

(5.116)

Da bei kausalen Signalen alle Exponenten der komplexen Variablen \(z\) immer \(M - N < 0\) sind, kann der Verschiebungssatz der z-Transformation für eine Verschiebung nach rechts angewendet werden. Die Folge \(x[k]\) im Zeitbereich ist damit

\[x[k] = \frac{b_0}{a_n} \cdot \delta[k - N] + \frac{b_1}{a_n} \cdot \delta[k - N + 1] + \ldots + \frac{b_M}{a_n} \cdot \delta[k - N + M] \]

(5.117)
Beispiel: N-facher Pol an der Stelle \(z = 0 \)

Die \(z \)-Transformierte \(X(z) \) soll in den Zeitbereich zurücktransformiert werden. Sie hat einen 4-fachen Pol an der Stelle \(z = 0 \).

\[
X(z) = \frac{z^4 + 2z^3 + 3z^2 + 2z + 1}{9 \cdot z^4} = \frac{1}{9} \left(1 + 2z^{-1} + 3z^{-2} + 2z^{-3} + 1z^{-4}\right) \quad (5.118)
\]

Mit dem Verschiebungssatz der \(z \)-Transformation ergibt sich im Zeitbereich die Folge

\[
x[k] = \frac{1}{9} \cdot \delta[k] + \frac{2}{9} \cdot \delta[k-1] + \frac{3}{9} \cdot \delta[k-2] + \frac{2}{9} \cdot \delta[k-3] + \frac{1}{9} \cdot \delta[k-4] \quad (5.119)
\]

Zusammenfassung der Ansätze für die Partialbruchzerlegung

Tabelle 5.6 fasst die Ansätze für die Partialbruchzerlegung zusammen. Dabei wird von einer \(z \)-Transformierten

\[
X(z) = \frac{B(z)}{A(z)} = \sum_{m=0}^{M} b_m \cdot z^{-m} = b_m, \quad \prod_{n=1}^{N} \left(z - \alpha_n\right)
\]

ausgegangen, bei der der Zählergrad \(M \) kleiner als der Nennergrad \(N \) ist. Die Koeffizienten \(a_n \) und \(b_m \) sind reelle Koeffizienten. Die Nullstellen \(\beta_m \) und die Pole \(\alpha_n \) sind nicht gleich.

Tabelle 5.6: Ansätze für die Partialbruchzerlegung

<table>
<thead>
<tr>
<th>Pollage</th>
<th>Ansatz Partialbruchzerlegung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einfache reelle oder komplexe Pole (\alpha_n)</td>
<td>(X(z) = \sum_{n=1}^{N} \frac{A_n}{z - \alpha_n})</td>
</tr>
<tr>
<td>p-facher reeller oder komplexer Pol (\alpha_n)</td>
<td>(X(z) = \sum_{n=1}^{N} \frac{A_n}{(z - \alpha)^p})</td>
</tr>
<tr>
<td>Ausschließlich Polstellen an der Stelle (z = 0)</td>
<td>(X(z) = \sum_{m=0}^{M} \frac{b_m}{a_n} \cdot z^{-m-N})</td>
</tr>
</tbody>
</table>

5.3.3 Rücktransformation über Reihenentwicklung

Funktionen können über Potenzreihen beschrieben werden. Für gebrochen rationale Funktionen ergeben sich die Potenzreihen aus einer Polynomdivision von Zähler- und Nennerpolynom. Diese Division ist im allgemeinen Fall jedoch nicht endlich. Es kann ein Polynom mit unendlich vielen Summanden entstehen, die mit der Verschiebungsregel rücktransformiert werden können.

Die Darstellung von Funktionen \(X(z) \) über sogenannte Laurent-Reihen sowie die entsprechende Rücktransformation sind in [Oppe04] beschrieben.
Beispiel: Inverse z-Transformation über Reihenentwicklung

Die Funktion X(z) soll mithilfe einer Reihenentwicklung in den Zeitbereich transformiert werden. Durch Polynomdivision werden die Glieder der Potenzreihe berechnet zu

\[
X(z) = \frac{z}{z + 0.5} = 1 + 0.5 \cdot z^{-1} + 0.25 \cdot z^{-2} + 0.125 \cdot z^{-3} + 0.0625 \cdot z^{-4} + \ldots
\]
\[(5.121)\]

Rücktransformation ergibt mit Anwendung der Verschiebungsregel

\[
x[k] = \delta[k] + 0.5 \cdot \delta[k-1] + 0.25 \cdot \delta[k-2] + 0.125 \cdot \delta[k-3] + 0.0625 \cdot \delta[k-4] + \ldots
\]
\[(5.122)\]

An diesem Beispiel zeigt sich, dass die Potenzreihe nicht endlich ist. Für eine exakte Lösung von x[k] müssten unendlich viele Glieder berechnet werden.
5.4 z-Transformation mit MATLAB

Zur Berechnung der z-Transformation und inversen z-Transformation sind folgende Verfahren von Interesse:

- Darstellung von Folgen
- z-Transformation und inverse z-Transformation
- Umformung und Vereinfachung von Ausdrücken
- Partialbruchzerlegung

5.4.1 Darstellung von Folgen

Für die Berechnung der z-Transformation sind zunächst einige Befehle notwendig, mit denen Folgen dargestellt werden können. Tabelle 5.7 stellt die wesentlichen Befehle zur Darstellung von Folgen zusammen.

Tabelle 5.7: Tabellarische Übersicht über Befehle zur Darstellung von Folgen in MATLAB

<table>
<thead>
<tr>
<th>Befehl</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>syms z k x X</td>
<td>Definition von Variablen für die symbolische Berechnung, hier werden die Variable z, der Folgenindex k, die Folge x und ihre z-Transformierte X definiert</td>
</tr>
<tr>
<td>heaviside(k)</td>
<td>Sprungfolge</td>
</tr>
<tr>
<td>heaviside(k) - heaviside(k - 1)</td>
<td>Zeitdiskrete Impulsfolge berechnet über Differenz zweier Sprungfolgen, dirac(k) kann bei zeitdiskreten Signalen nicht verwendet werden</td>
</tr>
<tr>
<td>+ - * /</td>
<td>Arithmetische Operationen können wie gewohnt verwendet werden</td>
</tr>
<tr>
<td>a^k</td>
<td>Potenzfunktion kann wie gewohnt verwendet werden</td>
</tr>
<tr>
<td>sin(k), cos(k), exp(k)</td>
<td>Auswahl von wesentlichen Funktionen, weitere Funktionen sind in der MATLAB-Hilfe beschrieben</td>
</tr>
</tbody>
</table>

Die Berechnung der Folgen sowie der entsprechenden z-Transformierten wird an einem Beispiel verdeutlicht.
Beispiel: Folgengleichung

Für die Folge

\[x[k] = 2 \cdot \sigma[k] + 5 \cdot 3^{k-1} \cdot \sigma[k-1] + \delta[k-3] \]
\[(5.123)\]

ergibt sich in MATLAB die Folgengleichung aus folgender Befehlssequenz

```matlab
% Definition der symbolischen Variablen
syms x X k z;

% Definition der Folge
x = 2*heaviside(k) + 5*3^(k-1)*heaviside(k-1) + (heaviside(k-3)-heaviside(k-4));
```

Zunächst werden die symbolischen Variablen \(x, X, k \) und \(z \) definiert, die zur Berechnung der Folge und später zur Berechnung der z-Transformierten benötigt werden. Anschließend wird die Folge definiert. Da MATLAB die einseitige z-Transformation durchführt, könnte die Sprungfolge \(\sigma[k] \) weggelassen werden. Die Impulsfolge wird als Differenz zweier Sprünge dargestellt.

\[\star\]

5.4.2 z-Transformation und inverse z-Transformation

Sind die Folgen definiert, können sie in den z-Bereich transformiert werden. Zur z-Transformation und inversen z-Transformation stehen zwei direkte Befehle zur Verfügung. Sie sind in Tabelle 5.8 zusammengestellt.

Tabelle 5.8: Befehle zur z- und inversen z-Transformation

<table>
<thead>
<tr>
<th>Befehl</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>(X = \text{ztrans}(x,k,z))</td>
<td>z-Transformation der symbolisch definierten Folge (x) mit dem Folgenindex (k) in den z-Bereich mit der Variable (z)</td>
</tr>
<tr>
<td>(x = \text{iztrans}(X,z,k))</td>
<td>inverse z-Transformation der symbolisch definierten z-Transformierten (X) mit der Variable (z) in den Zeitbereich mit dem Folgenindex (k)</td>
</tr>
<tr>
<td>(\text{symsum}(x, k, a, b))</td>
<td>Symbolische Berechnung der Summe einer Folge (x) mit dem Folgenindex (k) in den Grenzen von (a) bis (b)</td>
</tr>
</tbody>
</table>

MATLAB führt die einseitige z-Transformation aus. Damit sind die Ergebnisse für die Folge \(x[k] = 1 \) und \(x[k] = \sigma[k] \) identisch.

Beispiel: z-Transformation mit MATLAB

Die Folge \(x[k] \) mit

\[x[k] = 2 \cdot \sigma[k] + 5 \cdot 3^{k-1} \cdot \sigma[k-1] + \delta[k-3] \]
\[(5.124)\]

soll in den z-Bereich transformiert werden. Als Ergebnis wird mit den Rechenregeln der z-Transformation die z-Transformierte
\[X(z) = 2 \cdot \frac{z}{z-1} + 5 \cdot z^{-1} \cdot \frac{z}{z-3} + z^{-3} \]

(5.125)

erwartet. Die Berechnung in MATLAB ergibt sich mit dem Befehl

```matlab
% Transformation der Folge in den z-Bereich
X = ztrans(x,k,z)
```

Das von MATLAB berechnete Ergebnis lautet

\[X = \frac{2z}{z-1} + \frac{5}{9} \frac{z}{1/3z-1} = \frac{5}{3} + \frac{1}{z^3} \]

Während die Übereinstimmung für den ersten und letzten Summanden direkt deutlich wird, ist die Übereinstimmung des mittleren Summanden erst nach Umformungen erkennbar.

\[\frac{5}{9} \cdot \frac{z}{3} - \frac{5}{3} = \frac{5}{3} \cdot \frac{z}{z-3} = \frac{5}{3} \left(\frac{z}{z-3} - \frac{z-3}{z-3} \right) = \frac{5}{z-3} \cdot z^{-1} \]

(5.126)

Die Rücktransformation soll an demselben Beispiel geübt werden.

```matlab
% Transformation der Folge in den z-Bereich
y = iztrans(X,z,k)
```

Es ergibt sich das Ergebnis

\[y = 2 + \frac{5}{3} \cdot 3^k - \frac{5}{3} \cdot \text{charfcn}[0](k) + \text{charfcn}[3](k) \]

Die bei dem Ergebnis verwendete \text{charfcn}[k_0](k)-Folge entspricht der Impulsfolge an der Stelle \(k_0 \). Damit sind die Ergebnisse identisch.
5.4.3 Umformung und Vereinfachung von Ausdrücken

Bereits diese einfachen Beispiele haben gezeigt, dass die Berechnung der z-Transformierten oder inversen z-Transformierten weniger aufwendig ist, als die Umformung des Ergebnisses in die gewohnte Form. Deshalb werden in Tabelle 5.9 einige Befehle zur Umformung und Vereinfachung von Ausdrücken vorgestellt.

Tabelle 5.9: Tabellarische Übersicht über Befehle zur Umformung und Vereinfachung von Ergebnissen

<table>
<thead>
<tr>
<th>Befehl</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>collect(x,k)</td>
<td>Sortiert den Ausdruck x nach Potenzen der Variable k</td>
</tr>
<tr>
<td>expand(x)</td>
<td>Multipliziert den Ausdruck x aus</td>
</tr>
<tr>
<td>factor(x)</td>
<td>Stellt einen Ausdruck x als Produkt von Faktoren dar</td>
</tr>
<tr>
<td>simple(x)</td>
<td>Erstellt die kürzeste Darstellungsform für den Ausdruck x</td>
</tr>
<tr>
<td>pretty(x)</td>
<td>Stellt den Ausdruck x in einer grafische Form dar</td>
</tr>
<tr>
<td>([r,p,k] = \text{residue}(b,a))</td>
<td>Berechnung der Partialbrüche mit Koeffizient r, Pol p und Konstante k bei gegebener gebrochen rationaler Funktion mit den Koeffizienten b und a</td>
</tr>
<tr>
<td>([a,b] = \text{residue}(r,p,k))</td>
<td>Berechnung der Koeffizienten b und a einer gebrochen rationalen Funktion bei gegebenen Partialbrüchen mit Koeffizient r, Pol p und Konstante k</td>
</tr>
</tbody>
</table>

Die genaue Bezeichnung der einzelnen Befehle kann in der MATLAB-Hilfe nachgeschlagen werden. Hier soll an zwei Beispielen der Umgang mit den Befehlen verdeutlicht werden.

Beispiel: z-Transformation einer harmonischen Folge mit MATLAB

Die z-Transformierte einer Cosinus-Folge errechnet sich mit MATLAB mit folgender Sequenz:

```matlab
% Definition der symbolischen Variablen
syms f TA k z x X;

% Definition der Kosinusfolge
x = cos(2*pi*f*k*TA);
X = ztrans(x,k,z);
pretty(simple(X))
```

\[
\begin{align*}
2 & - z \cos(2 \pi f TA) \\
\hline
2 & - 2 z \cos(2 \pi f TA) + z
\end{align*}
\]

Das Ergebnis entspricht Korrespondenz 15. Leider ist die z-Transformierte oft nicht so leicht zu interpretieren wie in diesem Fall. Insbesondere bei harmonischen Folgen ergeben sich aufgrund der Additionstheoreme viele unterschiedliche Darstellungsformen, sodass der Vorteil der symbolischen Berechnung der z-Transformierten oft einem hohen Aufwand für die Umformung der berechneten z-Transformierten gegenübersteht.
Beispiel: Partialbruchzerlegung mit MATLAB

Der Befehl residue rechnet die unterschiedlichen Darstellungsformen für gebrochen rationale Funktionen ineinander um. Die Berechnung wird numerisch durchgeführt, der Befehl ist deshalb kein Teil der Symbolic Math Toolbox. Bei einfachen Polen wird folgende Nomenklatur zugrunde gelegt:

\[
\frac{b_1 \cdot z^M + b_2 \cdot z^{M-1} + \ldots + b_M \cdot z + b_{M+1}}{a_1 \cdot z^N + a_2 \cdot z^{N-1} + \ldots + a_N \cdot z + a_{N+1}} = \frac{r_1}{z-p_1} + \frac{r_2}{z-p_2} + \ldots + \frac{r_N}{z-p_N} + k \quad (5.127)
\]

Treten bei der Partialbruchzerlegung vielfache Pole \(p_n \) auf, so werden sie mit aufsteigender Potenz dargestellt:

\[
\frac{b_1 \cdot z^M + b_2 \cdot z^{M-1} + \ldots + b_M \cdot z + b_{M+1}}{a_1 \cdot z^N + a_2 \cdot z^{N-1} + \ldots + a_N \cdot z + a_{N+1}} = \frac{r_1}{(z-p_n)^n} + \frac{r_{n+1}}{(z-p_n)^{n+1}} + \ldots \quad (5.128)
\]

\[
X(z) = \frac{z}{z^2 + 3 \cdot z + 2} = \frac{z}{(z+1) \cdot (z+2)} = \frac{-1}{z+1} + \frac{2}{z+2} \quad (5.129)
\]

Die Partialbruchzerlegung ergibt sich mit MATLAB mit folgender Sequenz:

```matlab
% Definition der gebrochen rationalen Funktion über Koeffizienten-Vektoren
b = [1 0];
a = [1 3 2];
% Berechnung der Partialbrüche
[r, p, k] = residue(b, a)
```

MATLAB reagiert mit der Aussgabe

```
r = [2 -1]
p = [-2 -1]
k = []
```

Das Ergebnis entspricht der analytischen Rechnung. Im Gegensatz zur analytischen Berechnung der z-Transformierten kann die Partialbruchzerlegung fast immer vorteilhaft eingesetzt werden.
5.5 Literatur

5.5.1 Literaturstellen mit besonders anschaulicher Darstellung

5.5.2 Literaturstellen mit praktischen Anwendungen

5.5.3 Literatur zu MATLAB

[Schw07] Schweizer, Wolfgang: MATLAB kompakt, Oldenbourg Verlag München, 2007

5.5.4 Weiterführende Literatur

5.5.5 Literatur zum Projekt

[]
5.6 Übungsaufgaben - z-Transformation

5.6.1 Berechnung der z-Transformierten
Berechnen Sie die z-Transformierten der Folgen und geben Sie den Konvergenzbereich an.

a) \[x_1[k] = \delta[k-4] - 4 \cdot \delta[k-3] + 6 \cdot \delta[k-2] - 4 \cdot \delta[k-1] + \delta[k] \]

b) \[x_2[k] = k^3 \cdot 2^{-(k-1)} \cdot \sigma[k] \]

c) \[x_3[k] = k^2 \cdot \sigma[k] \]

d) \[x_4[k] = \sum_{n=0}^{\infty} \delta[k-n] \]

e) \[x_5[k] = \lambda^k \cdot \sigma[k-2] \]

f) \[x_6[k] = \lambda^k \cdot \cos(k \cdot \Omega_0) \cdot \sigma[k] \]

g) \[x_7[k] = \lambda^k \cdot \sin(k \cdot \Omega_0) \cdot \sigma[k] \]

5.6.2 Inverse z-Transformation
Gegeben sind die z-Transformierte \(X(z) \) der Folgen \(x[k] \). Berechnen Sie \(x[k] \) über Partialbruchzerlegung und die angegebenen Korrespondenzen.

a) \[X_1(z) = \frac{z}{z^2 - 0.6 \cdot z + 0.09} \]

b) \[X_2(z) = \frac{z^{-1}}{z^2 - 3.2 \cdot z + 0.6} \]

c) \[X_3(z) = \frac{z}{z^2 - 0.2 \cdot z - 0.24} \]

d) \[\text{Für } |a| < 1 \text{ und } |b| < 1 \text{ sowie } a \neq b \]

\[X_4(z) = \frac{1}{(z-a)(z-b)} \]

f) \[X_6(z) = \frac{z \cdot (z-2)}{z^2 - 2 \cdot z + 2} \]

e) \[X_7(z) = \frac{3 \cdot z^4 + 5 \cdot z^2 + 3 \cdot z - 5}{z^2} \]

5.6.3 Konvergenz der z-Transformation
Geben Sie die zu den z-Transformierten gehörenden Folgen \(x[k] \) an. Entscheiden Sie, ob die Folgen endlich oder unendlich sind.

a) \[X_1(z) = 1 - z^{-3} \]

b) \[X_2(z) = \frac{1}{z^2} - 1 \]

c) \[X_3(z) = \frac{1}{z^2} \]

d) \[X_4(z) = 1 + \frac{z + 1}{z - 0.5} \]

e) \[X_5(z) = \frac{2 \cdot z^2 - 4 \cdot z + 2}{z \cdot (z-1)} \]
5.6.4 Pol-Nullstellen-Diagramm einer z-Transformierten

Gegeben ist die abschnittsweise definierte Folge

$$x[k] = \begin{cases} 1 & 0 \leq k \leq r \\ 0 & \text{sonst} \\ -1 & r + 1 \leq k \leq 2 \cdot r + 1, \quad r \in \mathbb{N} \end{cases}$$

a) Skizzieren Sie die Folge $x[k]$ für $r = 3$.
b) Stellen Sie die Folge $x[k]$ mit Hilfe von Sprungfolgen dar.
c) Berechnen Sie die z-Transformierte $X(z)$ allgemein für beliebige r.
d) Berechnen Sie allgemein die Pole und Nullstellen von $X(z)$.
e) Skizzieren Sie ein Pol-Nullstellen-Diagramm für $r = 3$.

5.6.5 Rekursive Berechnung von Folgenwerten

Gegeben sind die z-Transformierten $X(z)$ der kausalen Folgen $x[k]$. Geben Sie eine geschlossene Darstellung der zugehörigen Signale $x[k]$ an. Berechnen Sie $x[k]$ für $k = -3 \ldots 6$ und skizzieren Sie den Verlauf von $x[k]$. Bestimmen Sie rekursiv die ersten fünf Folgenwerte der zugehörigen Folge $x[k]$ und vergleichen Sie die rekursive Lösung mit der analytischen Lösung.

a) $X_1(z) = \frac{z^2}{z^2 - 2 \cdot z + 1}$
b) $X_2(z) = \frac{2 \cdot z^3 - 4 \cdot z + 2}{(z - 1)^3 \cdot z^3}$
c) $X_3(z) = \frac{z + 1}{z^2 - 1}$
d) $X_4(z) = \frac{3 \cdot z}{z^2 - 3 \cdot z + 2}$
5.7 Musterlösungen - z-Transformation

5.7.1 Berechnung der z-Transformierten

a) Durch Anwendung des Verschiebungssatzes ergibt sich für die Folge \(x_1[k] \)

\[x_1[k] = \delta[k - 4] - 4 \cdot \delta[k - 3] + 6 \cdot \delta[k - 2] - 4 \cdot \delta[k - 1] + \delta[k] \]

die z-Transformierte

\[X_1(z) = z^{-4} - 4 \cdot z^{-3} + 6 \cdot z^{-2} - 4 \cdot z^{-1} + 1 \]

b) Die Folge \(x[k] \) muss auf eine Form gebracht werden, für die die Korrespondenztafeln angewendet werden können.

\[x_2[k] = k \cdot 2^{-(k-1)} \cdot \sigma[k] = k \cdot 2^{-k} \cdot 2 \cdot \sigma[k] = 2 \cdot k^3 \cdot \left(\frac{1}{2}\right)^k \cdot \sigma[k] \]

Mit Korrespondenz 11 lautet die z-Transformierte zu der Folge \(x_2[k] \)

\[X_2(z) = \frac{z \cdot \frac{1}{2} \left(z^2 + 4 \cdot \frac{1}{2} z \cdot \left(\frac{1}{2}\right)^2 \right)}{\left(z - \frac{1}{2}\right)^2} = \frac{z \cdot (z^2 + 2 \cdot z + 0.25)}{z^2} \]

c) Die Multiplikation einer Folge mit \(k \) im Zeitbereich entspricht im Bildbereich die Multiplikation mit \(- z\) und die Ableitung der ursprünglichen z-Transformierten. Bei dieser Aufgabe wird zweimal mit \(k \) multipliziert. Zusammen mit der Korrespondenz der Sprungfolge ergibt sich

\[X_3(z) = -z \cdot \frac{d}{dz} \left(-z \cdot \frac{d}{dz} \left(\frac{z}{z-1} \right) \right) = \frac{z \cdot (z+1)}{(z-1)^2} \]

d) Die Folge kann auch dargestellt werden als

\[x_4[k] = \sum_{n=0}^{k} \delta[k-n] = \delta[k] + \delta[k-1] + \delta[k-2] \]

Durch Anwendung des Verschiebungssatzes und der Korrespondenz der Impulsfolge ergibt sich

\[X_4(z) = z^{-2} + z^{-1} + 1 = \frac{z^2 + z + 1}{z^2} \]

e) Durch Einsetzen in die Definitionsgleichung und eine Variablentransformation ergibt sich

\[X_5(z) = \sum_{k=2}^{\infty} \lambda^k \cdot z^{-k} = \sum_{k=0}^{\infty} \lambda^{(k+2)} \cdot z^{-(k+2)} = \lambda^2 \cdot z^{-2} \cdot \sum_{k=0}^{\infty} \lambda^k \cdot z^{-k} \]

Damit wird die Aufgabe auf eine geometrische Reihe zurückgeführt

\[X_5(z) = \lambda^2 \cdot z^{-2} \cdot \frac{1}{1 - \frac{\lambda}{z}} = \lambda^2 \cdot \frac{1}{z \cdot (z-\lambda)} \]

die für \(|z| \geq \lambda\) konvergiert.
f) Die Kosinusfolge kann mit der Eulerschen Formel auf Exponentialfolgen zurückgeführt werden
\[x_n[k] = \lambda^k \cdot \cos(k \cdot \Omega_0) \cdot \sigma[k] = \frac{\lambda^k}{2} \left(e^{i \Omega_0 k} + e^{-i \Omega_0 k} \right) \cdot \sigma[k] = \frac{1}{2} \left((\lambda \cdot e^{i \Omega_0})^k + (\lambda \cdot e^{-i \Omega_0})^k \right) \cdot \sigma[k] \]
Daraus ergibt sich durch Einsetzen in die Definitionsgleichung der z-Transformation die Transformierte
\[X_\theta(z) = \sum_{k=0}^{\infty} x[k] \cdot z^{-k} = \frac{1}{2} \sum_{k=0}^{\infty} \left(\lambda \cdot e^{i \Omega_0 k} \right)^k \cdot z^{-k} + \frac{1}{2} \sum_{k=0}^{\infty} \left(\lambda \cdot e^{-i \Omega_0 k} \right)^k \cdot z^{-k} \]
Beide Summen können als geometrische Reihe betrachtet werden mit
\[q_{k2} = \frac{\lambda \cdot e^{i \Omega_0 k}}{z} \]
Der Betrag ergibt sich aus
\[|q_{k2}| = \frac{\lambda}{z} \]
Für |z| \geq \lambda konvergiert die geometrische Reihe, und es ergibt sich die z-Transformierte
\[X_\theta(z) = \frac{1}{2} \left(\frac{1}{1 - \lambda \cdot e^{i \Omega_0} \cdot z^{-1}} + \frac{1}{1 - \lambda \cdot e^{-i \Omega_0} \cdot z^{-1}} \right) = \frac{1}{2} \left(\frac{z}{z - \lambda \cdot e^{i \Omega_0}} + \frac{z}{z - \lambda \cdot e^{-i \Omega_0}} \right) \]
g) Diese Aufgabe wird nach demselben Schema wie Aufgabe f) berechnet. Die Folge wird aufgeteilt
\[x_j[k] = \lambda^k \cdot \sin(k \cdot \Omega_0) \cdot \sigma[k] = \frac{\lambda^k}{2 \cdot j} \left(e^{i \Omega_0 k} - e^{-i \Omega_0 k} \right) \cdot \sigma[k] = \frac{1}{2 \cdot j} \left((\lambda \cdot e^{i \Omega_0})^k - (\lambda \cdot e^{-i \Omega_0})^k \right) \cdot \sigma[k] \]
und mit der geometrischen Reihe in den z-Bereich transformiert.
\[X_j(z) = \frac{1}{2 \cdot j} \left(\frac{1}{1 - \lambda \cdot e^{i \Omega_0} \cdot z^{-1}} - \frac{1}{1 - \lambda \cdot e^{-i \Omega_0} \cdot z^{-1}} \right) = \frac{1}{2 \cdot j} \left(\frac{z}{z - \lambda \cdot e^{i \Omega_0}} - \frac{z}{z - \lambda \cdot e^{-i \Omega_0}} \right) \]
Der Konvergenzbereich ist identisch zu Teilaufgabe a) und lautet |z| \geq \lambda.

5.7.2 Inverse z-Transformation

a) Zuerst werden die Pole der z-Transformation berechnet. \(X_1(z) \) besitzt einen doppelten Pol an der Stelle \(\alpha_{1/2} = 0.3 \). Damit lautet der Ansatz für die Partialbruchzerlegung
\[X_1(z) = \frac{z}{z^2 - 0.6z + 0.09} = \frac{z}{(z - 0.3)^2} = \frac{1}{0.3} \cdot \frac{z}{(z - 0.3)^2} \]
Durch die Rücktransformation mit der Korrespondenz 6 ergibt sich
\[x_1[k] = \frac{1}{0.3} \cdot k \cdot 0.3^k \cdot \sigma[k] = k \cdot 0.3^{k-1} \cdot \sigma[k] \]
b) Zuerst werden die Pole der z-Transformierten berechnet zu \(\alpha_1 = 0, \alpha_2 = 0.2 \) und \(\alpha_3 = 3 \). Damit ergibt sich folgender Ansatz für die Partialbruchzerlegung
\[X_2(z) = \frac{z^{-1}}{z^2 - 3.2z + 0.6} = \frac{1}{z \cdot (z - 3)(z - 0.2)} = \frac{A}{z} + \frac{B}{z - 3} + \frac{C}{z - 0.2} \]
Die Koeffizienten werden über den Residuensatz berechnet zu $A = 1.67$, $B = 0.119$ und $C = -1.79$. Damit kann die z-Transformierte dargestellt werden als

$$X_2(z) = z \cdot \frac{1.67}{z-3} + \frac{0.119}{z-0.2} \cdot z - \frac{1.79}{z-0.2} \cdot z$$

und durch Anwendung der Korrespondenz 5 und des Verschiebungssatzes ergibt sich

$$x_2[k] = 1.67 \cdot \delta[k-1] + 0.119 \cdot 3^{-k-1} \cdot \sigma[k-1] - 1.79 \cdot 0.2^{-k-1} \cdot \sigma[k-1]$$

c) Die Pole der z-Transformierten ergeben sich zu $\alpha_1 = 0.6$ und $\alpha_2 = -0.4$. Damit lautet der Ansatz für die Partialbruchzerlegung

$$X_3(z) = \frac{z}{z^2 - 0.2 \cdot z - 0.24} = \frac{z}{(z-0.6) \cdot (z+0.4)} = \frac{A}{z-0.6} + \frac{B}{z+0.4}$$

Die Koeffizienten werden über die Bestimmungsgleichung berechnet zu $A = 0.6$ und $B = 0.4$. Damit kann die z-Transformierte dargestellt werden als

$$X_3(z) = \frac{0.6}{z-0.6} + \frac{0.4}{z+0.4} = \frac{0.6 \cdot z}{z-0.6} + \frac{0.4 \cdot z}{z+0.4} \cdot z$$

und durch Anwendung der Korrespondenz 5 und des Verschiebungssatzes ergibt sich

$$x_3[k] = 0.6 \cdot 0.6^{-k-1} \cdot \sigma[k-1] + 0.4 \cdot (-0.4)^{-k-1} \cdot \sigma[k-1] = 0.6^k \cdot \sigma[k-1] - (-0.4)^k \cdot \sigma[k-1]$$

d) Die z-Transformierte kann in zwei Partialbrüche aufgeteilt werden.

$$X_4(z) = \frac{1}{(z-a) \cdot (z-b)} = \frac{A}{z-a} + \frac{B}{z-b}$$

Über die Bestimmungsgleichung ergeben sich die Koeffizienten A und B zu

$$A = \frac{1}{a-b} \quad \text{und} \quad B = \frac{1}{b-a}$$

Damit ergibt sich die Partialbruch-Darstellung

$$X_4(z) = \frac{1}{a-b} \cdot \frac{1}{z-a} + \frac{1}{b-a} \cdot \frac{1}{z-b} = \frac{1}{a-b} \cdot z^{-1} + \frac{1}{b-a} \cdot z^{-1}$$

und durch Anwendung der Korrespondenz 8 und des Verschiebungssatzes ergibt sich

$$x_4[k] = \frac{1}{a-b} \cdot a^{-k-1} \cdot \sigma[k-1] + \frac{1}{b-a} \cdot b^{-k-1} \cdot \sigma[k-1]$$

e) Die Berechnung dieser Inversen z-Transformation wird direkt über den Verschiebungssatz rück-transformiert.

$$X_5(z) = \frac{3 \cdot z^4 + 5 \cdot z^2 + 3 \cdot z - 5}{z^2} = 3 \cdot z^2 + 5 \cdot z^{-1} - 5 \cdot z^{-2}$$

Damit ergibt sich die Folge

$$x_5[k] = 3 \cdot \delta[k+2] + 5 \cdot \delta[k] + 3 \cdot \delta[k-1] - 5 \cdot \delta[k-2]$$

f) Bei der z-Transformierten $X_6(z)$ sind Zähler- und Nennergrad gleich groß. Deshalb muss eine Polynomdivision durchgeführt werden.
\(X_a(z) = \frac{z \cdot (z - 2)}{z^2 - 2 \cdot z + 2} = \frac{z^2 - 2 \cdot z + 2 - 2}{(z - 1 - i) \cdot (z - 1 + i)} = 1 + \frac{A}{z - 1 - i} + \frac{B}{z - 1 + i} \)

Mit der Bestimmungsgleichung ergeben sich die Koeffizienten zu \(A = j \) und \(B = A^* = -j \). Damit lautet die Darstellung von \(X_a(z) \) in Partialbrüchen

\[X_a(z) = 1 + \frac{j}{(z - 1 - j)} + \frac{-j}{(z - 1 + j)} = 1 + \frac{j \cdot z}{(z - 1 - j)} \cdot z^{-1} - \frac{j \cdot z}{(z - 1 + j)} \cdot z^{-1} \]

Rücktransformation in den Zeitbereich ergibt nach einigen Umformungen

\[
x_a[k] = \delta[k] + j \cdot (1 + j)^{k-1} \cdot \sigma[k - 1] - j \cdot (1 - j)^{k-1} \cdot \sigma[k - 1] = \delta[k] + j \cdot \left((1 + j)^{k-1} - (1 - j)^{k-1} \right) \cdot \sigma[k - 1]
\]

\[
= \delta[k] + j \cdot \left(\sqrt{2} \cdot e^{\frac{\pi}{4}} \right)^{k-1} \cdot \sigma[k - 1] + j \cdot \left(\sqrt{2} \cdot e^{-\frac{\pi}{4}} \right)^{k-1} \cdot \sigma[k - 1] = \delta[k] + j \cdot \left(\sqrt{2} \cdot e^{\frac{\pi}{4}} \right)^{k-1} \cdot \sin \left(\frac{\pi}{4} \cdot (k - 1) \right) \cdot \sigma[k - 1]
\]

5.7.3 Inverse z-Transformation endlicher und unendlicher Folgen

a) Die Folge \(x_1[k] \) ist eine endliche Folge, die z-Transformierte hat nur Pole im Koordinatenursprung.

\[
x_1[k] = \delta[k] - \delta[k - 3]
\]

b) Die Folge \(x_2[k] \) ist ebenfalls eine endliche Folge.

\[
x_2[k] = -\delta[k] + \delta[k - 3]
\]

c) Die Folge \(x_3[k] \) ist auch eine endliche Folge.

\[
x_3[k] = \delta[k - 2]
\]

d) Die Folge \(x_4[k] \) ist eine unendliche Folge, die z-Transformierte hat Pole außerhalb des Koordinatenursprungs.

\[
x_4[k] = \delta[k] + (0.5)^k \cdot \sigma[k] + (0.5)^{k-1} \cdot \sigma[k - 1]
\]

e) Die z-Transformierte kann umgeformt werden zu

\[
X_a(z) = \frac{2 \cdot z^2 - 4 \cdot z + 2}{z \cdot (z - 1)} = 2 \cdot \frac{(z - 1)^2}{z \cdot (z - 1)} = 2 \cdot \frac{z - 1}{z} = 2 - \frac{2}{z}
\]

Die Folge \(x_5[k] \) ist damit eine endliche Folge

\[
x_5[k] = 2 \cdot \delta[k] - 2 \cdot \delta[k - 1]
\]
5.7.4 Pol-Nullstellen-Diagramm einer z-Transformierten

a) Die Skizze der Folge $x[k]$ ist für $r = 3$ in folgendem Diagramm dargestellt.

![Pol-Nullstellen-Diagramm](image)

b) Die Folge kann für $r = 3$ mathematisch beschrieben werden als

$$x[k] = \sigma[k] - 2 \cdot \sigma[k - 4] + \sigma[k - 8]$$

c) Um die allgemeine Folge in den z-Bereich zu transformieren, wird die allgemeine Folge mit Sprungfunktionen beschrieben.

$$x[k] = \sigma[k] - 2 \cdot \sigma[k - (r + 1)] + \sigma[k - (2 \cdot r + 2)]$$

$$X(z) = \frac{z}{z - 1} \left(1 - 2 \cdot z^{-r-1} + z^{-2r+2}\right) = \frac{z}{z - 1} \frac{z^{2r-1} - 2 \cdot z^{-1} + 1}{z^{2r-2}}$$

d) Pole und Nullstellen sollen berechnet werden.

Die Pole sind $\alpha_1 = 1$ und $\alpha_2 = 0$, wobei α_2 ein $2 \cdot r + 2$-facher Pol ist. Die Nullstellen sind $\beta_1 = 0$ und $\beta_2 = 1$. Pole und Nullstellen können entsprechend gekürzt werden.

e) Im Pol-Nullstellen-Diagramm werden die Pole für $r = 3$ dargestellt, d.h. $\alpha = 0$ ist nach dem Kürzen ein 7-facher Pol. Die Nullstellen liegen auf dem Einheitskreis.
5.7.5 Rekursive Berechnung von Folgenwerten

a) Für die rekursive Berechnung wird die z-Transformierte in eine Differenzengleichung umgeformt.

\[X(z) = \frac{z^2}{z^2 - 2z + 1} \]

Ausmultiplizieren und Division durch \(z^2 \) führt zu

\[(1 - 2 \cdot z^{-1} + z^{-2}) \cdot X(z) = 1\]

Rücktransformation in den Zeitbereich ergibt die Gleichung

\[x[k] = \delta[k] + 2 \cdot x[k-1] - x[k-2] \]

Zum Vergleich wird die inverse z-Transformierte berechnet. Es ergibt sich die Partialbruchzerlegung

\[X(z) = \frac{z^2}{z^2 - 2z + 1} = 1 + \frac{2 \cdot z - 1}{(z - 1) \cdot (z - 1)} = 1 + \frac{A}{z - 1} + \frac{B}{(z - 1)^2} \]

Nach der Bestimmungsgleichung ergeben sich die Koeffizienten \(A = 2 \) und \(B = 1 \). Damit kann aus der Partialbruch-Darstellung

\[X(z) = 1 + \frac{2 \cdot z}{z - 1} + \frac{1 \cdot z}{(z - 1)^2} \]

die Folge \(x_1[k] \) berechnet werden.

\[x_1[k] = \delta[k] + 2 \cdot x_1[k-1] + (k - 1) \cdot \sigma[k-1] \]

Die Zahlenwerte sind für die rekursive und analytische Lösung identisch, sie sind als Tabelle und als Grafik dargestellt.

<table>
<thead>
<tr>
<th>(k)</th>
<th>-3</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\delta[k])</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(x_1[k-1])</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>(x_1[k-2])</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>-2</td>
<td>-3</td>
<td>-4</td>
<td>-5</td>
</tr>
<tr>
<td>(x_1[k])</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>

Die Zahlenwerte sind für die rekursive und analytische Lösung identisch, sie sind als Tabelle und als Grafik dargestellt.
b) Nach demselben Schema wie in Teilaufgabe a) werden die weiteren Teilaufgaben berechnet. Die z-
Transformierte kann zur Berechnung der rekursiven Lösung vereinfacht werden zu

\[X_2(z) = \frac{2 \cdot z^3 - 4 \cdot z + 2}{(z - 1)^2 \cdot z^3} = \frac{2 \cdot z^3 + 2 \cdot z - 2}{(z - 1) \cdot z^3} \]

Es ergibt sich die Differenzengleichung

\[x_2[k] = 2 \cdot \delta[k - 2] + 2 \cdot \delta[k - 3] - 2 \cdot \delta[k - 4] + x_2[k - 1] \]

Die analytische Lösung wird wieder über Partialbruchzerlegung berechnet.

\[X_2(z) = \frac{2 \cdot z^3 - 2 \cdot z + 1}{(z - 1)^2 \cdot z^3} = \frac{z^2 + z - 1}{(z - 1) \cdot z^3} = 2 \cdot z^{-1} + 2 \cdot z^{-3} + 2 \cdot \frac{z}{z - 1} \cdot z^{-1} \]

Rücktransformation führt mit den bekannten Korrespondenzen und Rechenregeln zu

\[x_2[k] = -2 \cdot \delta[k - 1] + 2 \cdot \delta[k - 3] + 2 \cdot \sigma[k - 1] \]

Die Zahlenwerte sind für die rekursive und analytische Lösung identisch, sie sind als Tabelle und als Grafik dargestellt.

<table>
<thead>
<tr>
<th>k</th>
<th>-3</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ[k - 2]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>δ[k - 3]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>δ[k - 4]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>x2[k - 1]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>x2[k]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>
c) Die rekursive Lösung ergibt sich aus der Rücktransformation der z-Transformierten in den Zeitbereich.

\[X_3(z) = \frac{z + 1}{z^2 - 1} \]

Es ergibt sich die Differenzengleichung

\[x_3[k] = \delta[k - 1] + \delta[k - 2] + x_3[k - 2] \]

Die analytische Lösung lautet

\[X_3(z) = \frac{z + 1}{z^2 - 1} = \frac{z + 1}{(z + 1) \cdot (z - 1)} = \frac{1}{z - 1} = \frac{z}{z - 1} \cdot z^{-1} \]

mit der entsprechenden Folge

\[x_3[k] = \sigma[k - 1] \]

Die Zahlenwerte sind für die rekursive und analytische Lösung identisch, sie sind als Tabelle und als Grafik dargestellt.

<table>
<thead>
<tr>
<th>k</th>
<th>-3</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ[k - 1]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>δ[k - 2]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>x_3[k - 2]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>x_3[k]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

![Grafik](image.png)
d) Wieder wird zunächst die rekursive Lösung bestimmt.

\[X_4(z) = \frac{3 \cdot z}{z^2 - 3 \cdot z + 2} \]

Aus der inversen z-Transformierten ergibt sich die Differenzengleichung

\[x_4[k] = 3 \cdot \delta[k - 1] + 3 \cdot x_4[k - 1] - 2 \cdot x_4[k - 2] \]

Die analytische Lösung wird über Partialbruchzerlegung

\[X_4(z) = \frac{3 \cdot z}{z^2 - 3 \cdot z + 2} = -3 \cdot \frac{1}{z - 1} + 6 \cdot \frac{1}{z - 2} = -3 \cdot z^{-1} + 6 \cdot z^{-2} \]

und Rücktransformation bestimmt.

\[x_4[k] = -3 \cdot \sigma[k - 1] + 6 \cdot 2^{k - 1} \cdot \sigma[k - 1] = -3 \cdot \sigma[k - 1] + 3 \cdot 2^k \cdot \sigma[k - 1] \]

Die Zahlenwerte sind für die rekursive und analytische Lösung identisch, sie sind als Tabelle und als Grafik dargestellt.

<table>
<thead>
<tr>
<th>k</th>
<th>-3</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\delta[k])</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(x_4[k - 1])</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>9</td>
<td>27</td>
<td>63</td>
<td>135</td>
<td>279</td>
</tr>
<tr>
<td>(x_4[k - 2])</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-6</td>
<td>-18</td>
<td>-42</td>
<td>-90</td>
</tr>
<tr>
<td>(x_4[k])</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>9</td>
<td>21</td>
<td>45</td>
<td>93</td>
<td>189</td>
</tr>
</tbody>
</table>

[Diagramm auf der nächsten Seite]
6 Zeitdiskrete Systeme im z-Bereich

In der Praxis wird die Simulation und Interpretation zeitdiskreter Systeme mit Programmen wie MATLAB und Simulink durchgeführt. Die dazu erforderlichen Befehle und Methoden werden kurz vorgestellt und an Beispielen verdeutlicht.

6.1 Lösung von Differenzengleichungen mit der z-Transformation

Die Differenzengleichung wird mithilfe der z-Transformation in den z-Bereich transformiert. Aufgrund der Rechenregeln der z-Transformation ergibt sich eine algebraische Gleichung, die im z-Bereich gelöst wird. Mithilfe der Rücktransformation über Partialbruchzerlegung wird die Lösung im Zeitbereich bestimmt.

6.1.1 Lösung linearer Differenzengleichungen ohne Anfangsbedingungen

Zur Lösung der Differenzengleichung wird von der allgemeinen Form ausgegangen

$$
\sum_{n=0}^{N} c_n \cdot y[k-n] = \sum_{m=0}^{M} d_m \cdot u[k-m]
$$

(6.1)

Mit der Verschiebungsregel nach rechts ergibt sich die z-Transformierte der Gleichung zu

$$
\sum_{n=0}^{N} c_n \cdot Y(z) \cdot z^{-n} = \sum_{m=0}^{M} d_m \cdot U(z) \cdot z^{-m}
$$

(6.2)

Nach Ausklammern der beiden z-Transformierten $Y(z)$ und $U(z)$

$$
Y(z) \cdot \sum_{n=0}^{N} c_n \cdot z^{-n} = U(z) \cdot \sum_{m=0}^{M} d_m \cdot z^{-m}
$$

(6.3)

kann die Gleichung nach der z-Transformierten des Ausgangssignals $Y(z)$ aufgelöst werden.

$$
Y(z) = \frac{\sum_{m=0}^{M} d_m \cdot z^{-m}}{\sum_{n=0}^{N} c_n \cdot z^{-n}} \cdot U(z)
$$

(6.4)

Die Lösung im z-Bereich ist eine gebrochen rationale Funktion, die mithilfe der Partialbruchzerlegung und den bekannten Korrespondenzen in den Zeitbereich zurück transformiert werden kann. Dieses Vorgehen wird an der Differenzengleichung eines rekursiven Tiefpass verdeutlicht.

Beispiel: Rekursiver Tiefpass ohne Anfangsbedingungen

Es soll die Reaktion eines rekursiven Tiefpasses auf einen Sprung der Eingangsgröße $u[k]$ von der Höhe U_0 berechnet werden. Das Eingangssignal besitzt die z-Transformierte

$$
U(z) = \frac{Z}{z-1} \cdot U_0
$$

(6.5)

Das Übertragungsverhalten des rekursiven Tiefpasses wird mit der Differenzengleichung

$$
y[k] - GF \cdot y[k-1] = (1-GF) \cdot u[k]
$$

(6.6)

beschrieben. Die Transformation der Gleichung in den z-Bereich ergibt

$$
Y(z) \cdot (1-GF \cdot z^{-1}) = (1-GF) \cdot \frac{Z}{z-1} \cdot U_0
$$

(6.7)

Auflösen nach der z-Transformierten des Ausgangssignals $Y(z)$ führt zu
\[Y(z) = \frac{Z}{Z - GF} \cdot (1 - GF) \cdot \frac{Z}{Z - 1} \cdot U_0 \]
(6.8)

Mithilfe der Partialbruchzerlegung kann \(Y(z) \) dargestellt werden als

\[Y(z) = \frac{Z}{Z - GF} \cdot (1 - GF) \cdot \frac{Z}{Z - 1} \cdot U_0 = \left(-GF\right) \cdot \frac{Z}{Z - GF} + \frac{Z}{Z - 1} \cdot U_0 \]
(6.9)

Die Darstellung mit Partialbrüchen ermöglicht die Rücktransformation in den Zeitbereich zu

\[y[k] = \left((-GF) \cdot GF^k \cdot \sigma[k] + \sigma[k]\right) \cdot U_0 = \left(1 - GF^{k+1}\right) \cdot U_0 \cdot \sigma[k] \]
(6.10)

Ein Vergleich mit der über die Faltungssumme berechneten Systemantwort in Bild 6.2 zeigt identische Ausgangssignale.

Bild 6.2: Ausgangssignal eines rekursiven Tiefpass mit \(GF = 0.8 \) bei einem Eingangssprung (\(U_0 = 1 \))

6.1.2 Lösung linearer Differenzengleichungen mit Anfangsbedingungen

Zur Lösung linearer Differenzengleichungen mit Anfangsbedingungen wird wieder von der allgemeinen Form der Differenzengleichung ausgegangen

\[\sum_{n=0}^{N} c_n \cdot y[k - n] = \sum_{m=0}^{M} d_m \cdot u[k - m] \]
(6.11)

Aufgrund der Zeitinvarianz kann das System um \(N \) nach links verschoben werden. Es ergibt sich die Gleichung

\[\sum_{n=0}^{N} c_n \cdot y[k - n + N] = \sum_{m=0}^{M} d_m \cdot u[k - m + N] \]
(6.12)

Da das Argument der Folge \(y[k - n + N] \) damit immer größer gleich \(k \) ist, muss bei der Transformation der Gleichung in den \(z \)-Bereich die Verschiebungsregel nach links angewendet werden. Im \(z \)-Bereich ergibt sich die Gleichung

\[\sum_{n=0}^{N} c_n \left(Y(z) \cdot z^{N-n} - z^{N-n} \cdot \sum_{k=0}^{N-n} y[k] \cdot z^{-k} \right) = \sum_{m=0}^{M} d_m \left(U(z) \cdot z^{N-m} - z^{N-m} \cdot \sum_{k=0}^{N-m} u[k] \cdot z^{-k} \right) \]
(6.13)

Beispiel: RC-Tiefpass mit Anfangsbedingungen

Das Vorgehen wird wieder an der Differenzengleichung eines rekursiven Tiefpasses verdeutlicht.

\[y[k] - GF \cdot y[k-1] = (1 - GF) \cdot u[k] \] \hspace{1cm} (6.14)

Es soll die Reaktion des Tiefpasses auf einen Sprung der Eingangsgröße \(u[k] \) von der Höhe \(U_0 \) und für die Anfangsbedingungen \(y[0] = 2 \) berechnet werden. Zur Berücksichtigung der Anfangsbedingungen muss bei der Transformation der Gleichung in den \(z \)-Bereich die Verschiebungsregel nach links angewendet werden. Eine Index-Transformation führt zu

\[y[k+1] - GF \cdot y[k] = (1 - GF) \cdot u[k+1] \] \hspace{1cm} (6.15)

Die Transformation in den \(z \)-Bereich ergibt

\[z \cdot Y(z) - z \cdot y[0] - GF \cdot Y(z) = (1 - GF) \cdot (z \cdot U(z) - z \cdot u[0]) \] \hspace{1cm} (6.16)

Durch Einsetzen von \(U(z) \) und \(u[0] = 0 \) sowie Umformung

\[(z - GF) \cdot Y(z) = (1 - GF) \cdot \left(\frac{z^2}{z - 1} \cdot U_0 - z \cdot U_0 \right) + z \cdot y[0] = (1 - GF) \cdot U_0 \cdot \left(\frac{z^2}{z - 1} \right) + z \cdot y[0] \] \hspace{1cm} (6.17)

ergibt sich die Lösung im \(z \)-Bereich

\[Y(z) = (1 - GF) \cdot U_0 \cdot \left(\frac{z^2}{(z - 1) \cdot (z - GF)} \right) + \frac{z}{z - GF} \cdot y[0] \] \hspace{1cm} (6.18)

Der erste Term der \(z \)-Transformierten ist identisch zu dem Fall ohne Anfangsbedingungen in Gleichung (6.8). Der zweite Teil beschreibt das Systemverhalten aufgrund der Anfangsbedingung und kann mit der Korrespondenztafel in den Zeitbereich zurücktransformiert werden. Es ergibt sich das Ausgangssignal

\[y[k] = (1 - GF^{k+1}) \cdot U_0 \cdot \sigma[k] + y[0] \cdot GF^k \cdot \sigma[k] \] \hspace{1cm} (6.19)

Die Anfangsbedingung klingt ähnlich wie im zeitkontinuierlichen Bereich exponentiell ab. Bild 6.3 stellt die beiden Signalanteile dar.
6.1 Lösung von Differenzengleichungen mit der z-Transformation

6.1.3 Vorgehen zur Lösung linearer Differenzengleichungen

Die beiden Abschnitte zeigen das Vorgehen zur Lösung linearer Differenzengleichungen ohne und mit Anfangsbedingungen, das in Tabelle 6.1 zusammengefasst ist.

Tabelle 6.1: Vorgehen bei der Berechnung der Systemantwort mit der z-Transformation

<table>
<thead>
<tr>
<th>Schritt</th>
<th>Lösung einer Differenzengleichung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ohne Anfangsbedingungen</td>
</tr>
<tr>
<td>1</td>
<td>Differenzengleichung</td>
</tr>
<tr>
<td></td>
<td>[\sum_{n=0}^{N} c_n \cdot y[k - n] = \sum_{m=0}^{M} d_m \cdot u[k - m]]</td>
</tr>
<tr>
<td>2</td>
<td>Transformation der Differenzengleichung in den z-Bereich unter Verwendung der entsprechenden Verschiebungsregel</td>
</tr>
<tr>
<td>3</td>
<td>Berechnung der z-Transformierten Y(z)</td>
</tr>
<tr>
<td>4</td>
<td>Rücktransformation mithilfe der Partialbruchzerlegung und den bekannten Korrespondenzen</td>
</tr>
</tbody>
</table>

Bild 6.3: Ausgangssignal eines rekursiven Tiefpass mit GF = 0.8 bei einem Eingangssprung und Anfangsbedingung \(y[0] = 2 \)
6.2 Übertragungsfunktion zeitdiskreter Systeme

Im zeitkontinuierlichen Bereich werden Systeme durch die Übertragungsfunktion $G(s)$ charakterisiert. Sie ergibt sich aus der Laplace-Transformierten der Differentialgleichung bei verschwindenden Anfangsbedingungen. Dasselbe Verfahren wird auch bei zeitdiskreten Systemen angewendet. Zur Berechnung der z-Transformierten $Y(z)$ kann die Verschiebungsregel verwendet werden. Im Fall verschwindender Anfangsbedingungen ergibt sich

$$\sum_{n=0}^{N} c_n \cdot y[k-n] = \sum_{m=0}^{M} d_m \cdot u[k-m] \quad (6.20)$$

Alternativ kann die Berechnung über die Faltungsregel durchgeführt werden. Aus der Faltung im Zeitbereich

$$y[k] = \sum_{k=0}^{\infty} g[k] \cdot u[k-k] = \sum_{k=0}^{\infty} g[k-k] \cdot u[k] \quad (6.21)$$

folgt im z-Bereich

$$Y(z) = G(z) \cdot U(z) \quad (6.22)$$

Durch einen Vergleich der beiden Darstellungen ergibt sich die Übertragungsfunktion für zeitdiskrete Systeme aus der Gleichung

$$Y(z) = \sum_{m=0}^{M} d_m \cdot z^{-m} \cdot U(z) \sum_{n=0}^{N} c_n \cdot z^{-n} \quad (6.23)$$

Die Übertragungsfunktion beschreibt den Zusammenhang zwischen Ein- und Ausgangssignal im z-Bereich.

6.2.1 Bestimmung der Differenzengleichung aus der Übertragungsfunktion

Wie später gezeigt wird, ist das Ergebnis eines Filterentwurfs eine Übertragungsfunktion $G(z)$, die die definierten Filtereigenschaften besitzt. Um den Filter zum Beispiel in Form eines Mikro-Controller-Programms realisieren zu können, muss die Übertragungsfunktion

$$G(z) = \frac{Y(z)}{U(z)} = \frac{\sum_{m=0}^{M} d_m \cdot z^{-m}}{\sum_{n=0}^{N} c_n \cdot z^{-n}} \quad (6.24)$$

in eine Differenzengleichung umgeformt werden. Durch Ausmultiplizieren der beiden Brüche ergibt sich die Gleichung

$$Y(z) \cdot \sum_{n=0}^{N} c_n \cdot z^{-n} = U(z) \cdot \sum_{m=0}^{M} d_m \cdot z^{-m} \quad (6.25)$$

Sie kann mit der Verschiebungsregel in den Zeitbereich zurücktransformiert werden.
\[\sum_{n=0}^{N} c_n \cdot y[k-n] = \sum_{m=0}^{M} d_m \cdot u[k-m] \]
\[y[k] = \sum_{m=0}^{M} d_m \cdot u[k-m] - \sum_{n=1}^{N} c_n \cdot y[k-n] \]
(6.27)

Die Gleichung ist Grundlage für die technische Realisierung zeitdiskreter Systeme.

Beispiel: Systemrealisierung

Gegeben ist ein System mit der Übertragungsfunktion

\[G(z) = \frac{Y(z)}{U(z)} = \frac{0.5 \cdot z}{z - 0.5} = \frac{0.5}{1 - 0.5 \cdot z^{-1}} \]
(6.28)

Ausmultiplizieren

\[Y(z) \cdot (1 - 0.5 \cdot z^{-1}) = 0.5 \cdot U(z) \]
(6.29)

und Rücktransformation ergibt mit der Verschiebungsregel

\[y[k] - 0.5 \cdot y[k-1] = 0.5 \cdot u[k] \]
(6.30)

Zur Realisierung des Filters als Algorithmus muss die Gleichung nach \(y[k] \) aufgelöst werden. Das aktuelle Ausgangssignal des Filters errechnet sich damit zu

\[y[k] = \frac{1}{2} \cdot (u[k] + y[k-1]) \]
(6.31)

Diese Gleichung kann zum Beispiel als Software in einem Controller oder als zeitdiskrete Schaltung realisiert werden.

6.2.2 Impuls- und Sprungantwort

Die Übertragungsfunktion \(G(z) \) ist die \(z \)-Transformierte der Impulsantwort. Das ergibt sich unmittelbar aus der Definitionsgleichung, wenn für \(U(z) \) die \(z \)-Transformierte des Impulses

\[U(z) = 1 \]
(6.32)

eingesetzt wird:

\[Y(z) = G(z) \cdot U(z) = G(z) \cdot 1 = G(z) \]
(6.33)

Bei Anregung des Systems mit einer Sprungfolge mit der \(z \)-Transformierten
ergibt sich die z-Transformierte des Ausgangssignals zu

\[Y(z) = G(z) \cdot U(z) = G(z) \cdot \frac{z}{z-1} = H(z) \]

(6.35)

Diese Gleichung kann mit der Summationsregel rücktransformiert werden, und es ergibt sich

\[h[k] = \sum_{\kappa=0}^{k} g[\kappa] \]

(6.36)

Die Sprungantwort ergibt sich aus der Summe der einzelnen Folgenwerte der Impulsantwort. Dieses Ergebni

\[H(z) = \frac{z}{z-1} \cdot G(z) = \frac{1}{1-z^{-1}} \cdot G(z) \]

(6.37)

Diese Gleichung kann in den Zeitbereich rücktransformiert werden.

\[g[k] = h[k] - h[k-1] \]

(6.38)

Auch dieses Ergebnis entspricht sinngemäß den Eigenschaften zeitkontinuierlicher Systeme. Dort ist die Sprungantwort h(t) das Integral der Impulsantwort g(t). Umgekehrt kann die Impulsantwort aus der Sprungantwort berechnet werden. Im z-Bereich gilt:

\[\begin{align*}
\lim_{z \to 1} \frac{H(z) \cdot G(1)}{H(z)} &= G(1) \\
\end{align*}\]

(6.39)

Die Verstärkung eines zeitdiskreten Systems ergibt sich aus dem Wert der Übertragungsfunktion an der Stelle z = 1. Tabelle 6.4 fasst die Zusammenhänge von Impuls- und Sprungantwort zusammen.

Tabelle 6.2: Übersicht zum Zusammenhang von Impuls- und Sprungantwort

<table>
<thead>
<tr>
<th>Eigenschaft</th>
<th>Zeitbereich</th>
<th>z-Bereich</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impulsantwort</td>
<td>[g[k] = h[k] - h[k-1]]</td>
<td>[G(z) = H(z) \cdot (1 - z^{-1})]</td>
</tr>
<tr>
<td>Sprungantwort</td>
<td>[h[k] = \sum_{\kappa=0}^{k} g[\kappa]]</td>
<td>[H(z) = G(z) \cdot \frac{z}{z-1}]</td>
</tr>
<tr>
<td>Verstärkung des Systems</td>
<td>[\lim_{z \to 1} h[k]]</td>
<td>[\lim_{z \to 1} (z-1) \cdot H(z) = G(1)]</td>
</tr>
</tbody>
</table>
Zur Vertiefung des Begriffes der Sprungantwort werden ein zeitkontinuierliches und ein zeitdiskretes System verglichen, die an den Stellen \(t = k \cdot T_A \) dieselben Werte aufweisen.

\[
g[k] = g(k \cdot T_A) \quad (6.40)
\]

Die Sprungantwort des zeitkontinuierlichen Systems ergibt sich aus dem Integral

\[
h(t) = \int_0^t g(\tau) \, d\tau \quad (6.41)
\]

Die Sprungantwort des zeitdiskreten Systems ergibt sich aus der Summe

\[
h[k] = \sum_{k=0}^{\infty} g[k] \quad (6.42)
\]

Während das Integral die Fläche unter der Impulsantwort bis zum Punkt \(t \) repräsentiert, nähert die Summe die Fläche über Rechtecke. Die Breite der Rechtecke ist bei zeitdiskreten Systemen auf den Wert eins normiert. Aus diesem Grund gilt:

\[
h[k] \neq h(k \cdot T_A) \quad (6.43)
\]

Die Abtastzeit kann dadurch berücksichtigt werden, dass die Sprungantwort \(h[k] \) mit der Abtastzeit \(T_A \) multipliziert wird. Damit wird die Breite der Rechtecke von 1 auf \(T_A \) geändert.

\[
h[k] \cdot T_A = h(k \cdot T_A) \quad (6.44)
\]

Auch nach dieser Korrektur sind die Sprungantworten nicht identisch, da die Fläche unter der zeitkontinuierlichen Impulsantwort im zeitdiskreten Fall nur über Rechtecke approximiert wird.

Beispiel: Vergleich von Sprungantworten

Gegeben ist ein zeitkontinuierliches System mit der Impulsantwort

\[
g(t) = 2 \cdot e^{-\frac{t}{10 \, \text{ms}}} \cdot \sigma(t) \quad (6.45)
\]

Das System wird mit einer Abtastzeit \(T_A = 1 \, \text{ms} \) abgetastet. Es ergeben sich die Folgenwerte

\[
g[k] = 2 \cdot e^{-\frac{k}{10 \, \text{ms}}} \cdot \sigma[k] \quad (6.46)
\]

Die Sprungantwort des zeitkontinuierlichen Systems lautet

\[
h(t) = \int_0^t 2 \cdot e^{-\frac{\tau}{10 \, \text{ms}}} \, d\tau = -20 \, \text{ms} \cdot e^{-\frac{t}{10 \, \text{ms}}} \bigg|_0^t = 20 \, \text{ms} \cdot \left(1 - e^{-\frac{t}{10 \, \text{ms}}} \right) \cdot \sigma(t) \quad (6.47)
\]

Die Sprungantwort des zeitdiskreten Systems errechnet sich zu
\[h[k] = \sum_{k=0}^{\infty} 2 \cdot e^{-\frac{k}{10}} = 2 \cdot \left(\sum_{k=0}^{\infty} e^{-\frac{k}{10}} \right) = 2 \cdot \frac{1 - e^{-\frac{k+1}{10}}}{1 - e^{-\frac{1}{10}}} \] (6.48)

Durch die Multiplikation der Sprungantwort mit der Abtastzeit \(T_A \) ergibt sich die Näherung

\[h(k \cdot T_A) = h[k] \cdot T_A = 2 \cdot \frac{1 - e^{-\frac{k+1}{10}}}{1 - e^{-\frac{1}{10}}} \] (6.49)

Die Impuls- und Sprungantworten sind in Bild 6.4 dargestellt.

Es wird deutlich, dass die Sprungantworten nur näherungsweise gleich sind. Grund dafür ist die Approximation der Fläche unter der Impulsantwort mit den in Bild 6.4 eingezeichneten Rechtecken. Ein ausführlicher Vergleich zwischen zeitkontinuierlichen und zeitdiskreten Systemen wird in Kapitel Fehler! Verweisquelle konnte nicht gefunden werden. vorgenommen.
6.3 Interpretation der Übertragungsfunktion

6.3.1 Exkurs in die Darstellungsformen von Übertragungsfunktionen

Bei der Diskussion der Übertragungsfunktion werden unterschiedliche Darstellungsformen genutzt. Sie werden an dieser Stelle miteinander verglichen und ihre Bedeutung für die Systemtheorie herausgearbeitet.

Darstellungsformen zeitdiskreter LTI-Systeme

Die Übertragungsfunktion von zeitdiskreten LTI-Systemen kann auf unterschiedliche Art dargestellt werden. Die Beschreibung eines Systems mit der Differenzengleichung

\[\sum_{n=0}^{N} c_n \cdot y[k-n] = \sum_{m=0}^{M} d_m \cdot u[k-m] \]

ist direkt mit einer Übertragungsfunktion der Form

\[G(z) = \frac{Y(z)}{U(z)} = \frac{\sum_{m=0}^{M} d_m \cdot z^{-m}}{\sum_{n=0}^{N} c_n \cdot z^{-n}} \]

verknüpft. Um ein System mit Hilfe von Speichergliedern zu realisieren, wird die Gleichung nach \(Y(z) \) aufgelöst.

\[Y(z) = \sum_{m=0}^{M} d_m \cdot U(z) \cdot z^{-m} - \sum_{n=1}^{N} c_n \cdot Y(z) \cdot z^{-n} = d_m \cdot U(z) + \sum_{n=1}^{N} \left(d_n \cdot U(z) - c_n \cdot Y(z) \right) \cdot z^{-n} \]

Es ergibt sich die in Bild 6.7 gezeigte kanonische Darstellungsform von Systemen mit Speichergliedern.

Bild 6.5: Kanonisches Blockschaltbild eines linearen, zeitinvarianten Systems im zeitkontinuierlichen Bereich
Durch Erweiterung der Übertragungsfunktion (6.51) mit z^n ergibt sich eine Übertragungsfunktion, bei der für $d_0 \neq 0$ Zähler- und Nennergrad identisch sind.

$$G(z) = \frac{Y(z)}{U(z)} = \frac{z^N \cdot \sum_{m=0}^{M} d_m \cdot z^{-m}}{z^N \cdot \sum_{n=0}^{N} c_n \cdot z^{-n}} = \frac{\sum_{m=0}^{M} b_m \cdot z^{-m}}{\sum_{n=0}^{N} a_n \cdot z^{-n}}$$ (6.53)

Diese Darstellungsform wird bei der Rücktransformation einer z-Transformierten $G(z)$ durch Partialbruchzerlegung eingesetzt.

Beispiel: Darstellungsformen von Übertragungsfunktionen

Gegeben ist ein System mit der Differenzengleichung

$$y[k] + 3 \cdot y[k-1] + 2 \cdot y[k-2] = u[k] + 4 \cdot u[k-1]$$ (6.54)

und der daraus resultierenden Übertragungsfunktion

$$G(z) = \frac{Z^{-1}}{1 + 3 \cdot z^{-1} + 2 \cdot z^{-2}}$$ (6.55)

Auflösen nach $Y(z)$ ergibt

$$Y(z) = U(z) \cdot \left(4 \cdot U(z) - 3 \cdot Y(z) + 2 \cdot Y(z) \cdot z^{-1} \right) \cdot z^{-1}$$ (6.56)

Bild 6.7 zeigt die kanonische Darstellungsform des Systems mit Speichergliedern.

Bild 6.6: Kanonisches Blockschaltbild Systems mit der Differenzengleichung (6.54)

Die Übertragungsfunktion hat im Zähler eine Ordnung von $M = 1$ und im Nenner eine Ordnung $N = 2$. Erweitern der Übertragungsfunktion mit z^2 führt zu der Darstellung

$$G(z) = \frac{z^2 + 4 \cdot z}{z^2 + 3 \cdot z + 2}$$ (6.57)

Zähler- und Nennerpolynom haben denselben Grad $N = 2$. Nach Polynomdivison ergibt sich eine echt gebrochen rationale Funktion

$$G(z) = \frac{z^2 + 4 \cdot z}{z^2 + 3 \cdot z + 2} = 1 + \frac{z - 2}{z^2 + 3 \cdot z + 2}$$ (6.58)
6.3 Interpretation der Übertragungsfunktion

Sie kann als Summe von Partialbrüchen dargestellt

\[G(z) = 1 + \frac{z - 2}{z^2 + 3 \cdot z + 2} = 1 - \frac{3}{z + 1} + \frac{4}{z + 2} = 1 - 3 \cdot \frac{z}{z + 1} + 4 \cdot \frac{z}{z + 2} \cdot z^{-1} \]

(6.59)

und in den Zeitbereich zurücktransformiert werden.

\[g[k] = \delta[k] - 3 \cdot (-1)^{k-1} \cdot \sigma[k - 1] + 4 \cdot (-2)^{k-1} \cdot \sigma[k - 1] \]

(6.60)

Darstellungsformen zeitkontinuierlicher LTI-Systeme

Auch bei zeitkontinuierlichen Systemen kann die Übertragungsfunktion auf unterschiedliche Arten dargestellt werden. In Teil A dieser Buchreihe wird in Kapitel 5 ausgehend von einer Differentialgleichung N-ter Ordnung

\[\sum_{n=0}^{N} a_n \cdot \frac{d^n Y}{dt^n} = \sum_{m=0}^{M} b_m \cdot \frac{d^n u}{dt^n} \]

(6.61)

die Übertragungsfunktion

\[G(s) = \frac{Y(s)}{U(s)} = \frac{\sum_{m=0}^{M} b_m \cdot s^m}{\sum_{n=0}^{N} a_n \cdot s^n} \]

(6.62)

\[G(s) = \frac{Y(s)}{U(s)} = \frac{\sum_{m=0}^{M} b_m \cdot s^m}{\sum_{n=0}^{N} a_n \cdot s^n} \frac{1}{s^N} \sum_{m=0}^{M} b_m \cdot s^{m-N} = \sum_{m=0}^{M} d_m \cdot s^m \]

(6.63)

Ausmultiplizieren der Gleichung

\[Y(s) \cdot \sum_{n=0}^{N} c_n \cdot s^{-n} = U(s) \cdot \sum_{m=0}^{M} d_m \cdot s^{-m} \]

(6.64)

und Auflösen nach \(Y(s) \) führt mit \(c_0 = 1 \) zu dem Ausdruck

\[Y(s) = U(s) \cdot \sum_{m=0}^{M} d_m \cdot s^{-m} - Y(s) \cdot \sum_{n=1}^{N} c_n \cdot s^{-n} \]

\[= \sum_{m=0}^{M} d_m \cdot U(s) \cdot s^{-m} - \sum_{n=1}^{N} c_n \cdot Y(s) \cdot s^{-n} \]

(6.65)

Um die Integrierer zusammenfassen zu können, wird die erste Summe zerlegt.
\[Y(s) = \sum_{n=0}^{N} d_n \cdot U(s) \cdot s^{-n} - \sum_{n=1}^{N} c_n \cdot Y(s) \cdot s^{-n} = d_0 \cdot U(s) + \sum_{n=1}^{N} (d_n \cdot U(s) - c_n \cdot Y(s)) \cdot s^{-n} \] (6.66)

Es ergibt sich die in Bild 6.7 gezeigte kanonische Darstellungsform von Systemen mit Integrierern.

Bild 6.7: Kanonisches Blockschaltbild eines linearen, zeitinvarianten Systems im zeitkontinuierlichen Bereich

Beispiel: Darstellungsformen der Übertragungsfunktion für ein Feder-Masse-Dämpfer-System

Die unterschiedlichen Darstellungsformen für zeitkontinuierliche Systeme werden anhand eines Feder-Masse-Dämpfer-Systems mit der Differentialgleichung

\[F_e(t) = m \cdot \frac{d^2 x}{dt^2} + D \cdot \frac{dx}{dt} + c \cdot x(t) \] (6.67)

verdeutlicht. Eingangssignal ist der Kraftverlauf \(F_e(t) \), Ausgangssignal ist die Auslenkung \(x(t) \). Transformation in den Laplace-Bereich ergibt bei verschwindenden Anfangsbedingungen die Gleichung

\[F_e(s) = m \cdot s^2 \cdot X(s) + D \cdot s \cdot X(s) + c \cdot X(s) \] (6.68)

Damit lautet die Übertragungsfunktion

\[\frac{X(s)}{F_e(s)} = \frac{1}{m \cdot s^2 + D \cdot s + c} = \frac{1}{m} \cdot \frac{1}{\frac{D}{m} \cdot s + \frac{c}{m}} \] (6.69)

Auf Basis dieser Darstellung und den Polen des Systems

\[\alpha_{12} = -\frac{D}{2 \cdot m} \pm \sqrt{\frac{D^2}{4 \cdot m^2} - \frac{c}{m}} \] (6.70)

können die Systemeigenschaften diskutiert werden. Andererseits erfolgt die Systemsimulation über eine Darstellungsform.
X(s) = \frac{\frac{1}{s^2}}{m + \frac{D}{s} + \frac{c}{s^2}} \quad (6.71)

Sie kann nach X(s) aufgelöst werden

\[X(s) = \frac{1}{m} \left(\frac{1}{s^2} \cdot F_e(s) - \frac{D}{s} \cdot X(s) - \frac{c}{s^2} \cdot X(s) \right) \quad (6.72) \]

Es ergibt sich das in Bild 6.8 dargestellte kanonische Blockschaltbild.

![Bild 6.8: Kanonisches Blockschaltbild eines Feder-Masse-Dämpfer-Systems](image)

Je nach Anwendungsfall wird die Darstellung mit Zähler- und Nennerpolynom oder die Darstellung über Integrierglieder mit der Laplace-Transformierten 1/s verwendet.

Zusammenfassung der Darstellungsformen von Übertragungsfunktionen

Übertragungsfunktionen werden damit sowohl bei zeitkontinuierlichen als auch bei zeitdiskreten Systemen in zwei Darstellungsformen behandelt. Sie sind in Tabelle 6.3 zusammen mit ihrer Anwendung dargestellt.

<table>
<thead>
<tr>
<th>Anwendung</th>
<th>Zeitkontinuierliche Systeme</th>
<th>Zeitdiskrete Systeme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematische Diskussion der Übertragungsfunktion</td>
<td>[G(s) = \sum_{m=0}^{M} b_m \cdot s^m \sum_{n=0}^{N} a_n \cdot s^n]</td>
<td>[G(z) = \sum_{m=0}^{M} b_m \cdot z^m \sum_{n=0}^{N} a_n \cdot z^n]</td>
</tr>
<tr>
<td>Darstellungsform zur Realisierung der Systeme</td>
<td>[G(s) = \sum_{m=0}^{M} d_m \cdot s^{-m} \sum_{n=0}^{N} c_n \cdot s^{-n}]</td>
<td>[G(z) = \sum_{m=0}^{M} d_m \cdot z^{-m} \sum_{n=0}^{N} c_n \cdot z^{-n}]</td>
</tr>
</tbody>
</table>

Die folgende Diskussion der Übertragungsfunktion zeitdiskreter Systeme bezieht sich damit auf eine Übertragungsfunktion der Form
\[G(z) = \frac{\sum_{n=0}^{N} b_n \cdot z^n}{\sum_{n=0}^{N} a_n \cdot z^n} \] (6.73)
6.3.2 Pol-Nullstellen-Diagramme

Die Interpretation der Übertragungsfunktion erlaubt Aussagen über Stabilität, Schwingungsneigung und Sprungfähigkeit von Systemen. Ein wesentlicher Schritt zur Interpretation des Systems ist die Analyse der unterschiedlichen Pole α_n und der unterschiedlichen Nullstellen β_m. Dazu wird die Übertragungsfunktion durch Linearfaktoren dargestellt.

\[
G(z) = \frac{B(z)}{A(z)} = \frac{\sum_{m=0}^{M} b_m \cdot z^m}{\sum_{n=0}^{N} a_n \cdot z^n} = \frac{b_m}{a_n} \cdot \frac{(z - \beta_1)^{m_1} \cdot (z - \beta_2)^{m_2} \cdot \ldots}{(z - \alpha_1)^{n_1} \cdot (z - \alpha_2)^{n_2} \cdot \ldots} \tag{6.74}
\]

Die Pole α_n und Nullstellen β_m können zur besseren Übersicht in der komplexen Ebene dargestellt werden. Dabei werden Nullstellen mit einem Kreis und Pole mit einem Kreuz dargestellt, ihre Vielfachheit N_n und M_m wird in Klammern angegeben. Die Diagramme werden als Pol-Nullstellen-Diagramme oder als Pole-Zero-Maps bezeichnet.

Beispiel: Pol-Nullstellen-Diagramm

Ein System mit der Differenzengleichung

\[
y[k] - 0.2 \cdot y[k - 1] + 0.15 \cdot y[k - 2] = u[k] + 1.5 \cdot u[k - 1] \tag{6.75}
\]

weist eine Übertragungsfunktion

\[
G(z) = \frac{Y(z)}{U(z)} = \frac{1 + 1.5 \cdot z^{-1}}{1 - 0.2 \cdot z^{-1} + 0.15 \cdot z^{-2}} = \frac{z^2 + 1.5 \cdot z}{z^2 - 0.2 \cdot z + 0.15} = \frac{z \cdot (z + 1.5)}{(z - 0.5) \cdot (z + 0.3)} \tag{6.76}
\]

auf. Sie besitzt die Nullstellen $\beta_1 = -1.5$ und $\beta_2 = 0$, sowie die reellen Polstellen $\alpha_1 = -0.3$ und $\alpha_2 = 0.5$. Es ergibt sich das in Bild 6.9 dargestellte Pol-Nullstellen-Diagramm.

![Pol-Nullstellen-Diagramm](image)

Bild 6.9: Pol-Nullstellen-Diagramm des Systems aus Gleichung (6.75)

Das Pol-Nullstellen-Diagramm bietet einen guten Überblick über die Lage der Pole und Nullstellen in der komplexen Ebene.

*
6.3.3 Übertragungsfunktion und Kausalität von Systemen

Zur Überprüfung der Kausalität eines Systems mit der Übertragungsfunktion

\[G(z) = \frac{Y(z)}{U(z)} = \sum_{m=0}^{M} b_m \cdot z^m \div \sum_{n=0}^{N} a_n \cdot z^n = \frac{\sum_{m=0}^{M} b_m \cdot z^{m-N}}{\sum_{n=0}^{N} a_n \cdot z^{n-N}} \quad (6.77) \]

werden Zähler- und Nennerpolynom durch \(z^N \) dividiert. Ausmultiplizieren und Auflösen der Summen führt zur Gleichung

\[Y(z) \cdot (a_n + \ldots + a_0 \cdot z^{-N}) = U(z) \cdot (b_M \cdot z^{M-N} + \ldots + b_0 \cdot z^{-N}) \quad (6.78) \]

Rücktransformation ergibt für verschwindende Anfangsbedingungen

\[a_n \cdot y[k] + \ldots + a_0 \cdot y[k-N] = b_M \cdot u[k + M - N] + \ldots + b_0 \cdot u[k - N] \quad (6.79) \]

Das System ist kausal, wenn \(y[k] \) nur von aktuellen und vergangenen Eingangswerten abhängt. Das ist der Fall, wenn die Bedingung \(M \leq N \) erfüllt ist. Der Zählergrad der Übertragungsfunktion darf maximal so groß sein wie der Nennergrad, damit das System kausal ist.

Beispiel: Nicht kausales System

Gegeben ist ein System mit der Übertragungsfunktion

\[G(z) = \frac{Y(z)}{U(z)} = \frac{3 \cdot z^2 + z + 2}{2 \cdot z + 1} \quad (6.80) \]

Der Zählergrad \(M = 2 \) ist größer als der Nennergrad \(N = 1 \). Das System ist demnach nicht kausal. Umformen der Übertragungsfunktion führt zu

\[Y(z) \cdot (2 \cdot z + 1) = U(z) \cdot (3 \cdot z^2 + z + 2) \quad (6.81) \]

beziehungsweise

\[Y(z) \cdot (2 + z^{-1}) = U(z) \cdot (3 \cdot z + 1 + 2 \cdot z^{-1}) \quad (6.82) \]

Rücktransformation führt bei verschwindenden Anfangsbedingungen zu der Differenzengleichung

\[2 \cdot y[k] + y[k-1] = 3 \cdot u[k+1] + u[k] + 2 \cdot u[k-1] \quad (6.83) \]

Der aktuelle Ausgangswert

\[y[k] = \frac{1}{2} \left(3 \cdot u[k+1] + u[k] + 2 \cdot u[k-1] - y[k-1] \right) \quad (6.84) \]

ist von dem zukünftigen Wert \(u[k+1] \) abhängig, das System ist damit nicht kausal.
6.3.4 Übertragungsfunktion mit Zählergrad M gleich Nennergrad N

Für kausale Systeme ist der Zählergrad M der Übertragungsfunktion kleiner oder gleich dem Nennergrad N. Für den Fall M = N muss vor der Partialbruchzerlegung eine Polynomdivison durchgeführt werden. Dadurch entsteht im Ausdruck für die Übertragungsfunktion G(z) ein konstanter Summand. Da die inverse z-Transformierte zu einer Konstanten die Impulsfolge δ[k] ist, entspricht diesem Summand im Zeitbereich der Folgenwert für k = 0

\[g[k = 0] = \frac{b_m}{a_n} \]

(6.85)

Alle weiteren Summanden der Partialbruchzerlegung werden im Zeitbereich mit Sprungfunktionen der Form σ[k - 1] multipliziert und sind erst für k > 0 von null verschieden. Damit ist ein System nur dann sprungfähig, wenn der Zählergrad M gleich dem Nennergrad N ist.

Beispiel: Sprungfähiges System

Die Übertragungsfunktion G(z) soll interpretiert werden. Da der Zählergrad genauso groß ist wie der Nennergrad, wird eine Polynomdivison durchgeführt. Um auf einen Ausdruck der Korrespondenztafel zu kommen, muss der Restbruch mit z erweitert werden.

\[
G(z) = \frac{2 + z^{-1}}{1 - 0.2 \cdot z^{-1}} = \frac{2 \cdot z + 1}{z - 0.2} = 2 + \frac{1.4}{z - 0.2}
\]

(6.86)

Damit kann die Impulsantwort mit der Korrespondenztafel und der Verschiebungsregel bestimmt werden zu

\[
g[k] = 2 \cdot \delta[k] + 1.4 \cdot 0.2^{k-1} \cdot \sigma[k - 1]
\]

(6.87)

Sie springt an der Stelle k = 0 auf den Wert 2.

6.3.5 Partialbruchzerlegung mit einfachen reellen Polen

Besitzt die Übertragungsfunktion einfache reelle Pole \(\alpha_n \neq 0 \), kann sie über die Partialbruchzerlegung dargestellt werden als

\[
G(z) = \sum_{n=1}^{N} \frac{A_n}{z - \alpha_n}
\]

(6.88)

Jeder einzelne Partialbruch hat die Form

\[
G_n(z) = \frac{A_n}{z - \alpha_n} = A_n \cdot \frac{z}{z - \alpha_n} \cdot z^{-1}
\]

(6.89)

Im Zeitbereich ergibt sich damit für jeden Partialbruch eine Exponentialfunktion, die um einen Folgenindex nach rechts verschoben ist:

\[
g_n[k] = A_n \cdot \alpha_n^{k-1} \cdot \sigma[k - 1]
\]

(6.90)

Die Summe der einzelnen Partialbrüche entspricht deshalb im Zeitbereich der Folge...
\[g[k] = \sum_{n=1}^{N} A_n \cdot \alpha_n^{k-1} \cdot \sigma[k-1] \] (6.91)

Der Betrag der Pole \(\alpha_n \) entscheidet über die Frage, ob die Impulsantwort konvergent oder divergent ist und damit über die Stabilität des Systems.

Die Impulsantwort beginnt bei sprungfähigen Systemen bei \(k = 0 \) und bei nicht sprungfähigen Systemen bei \(k = 1 \), und sie ist unendlich lang. Deshalb werden die Impulsantwort als Infinite-Impulse-Response und die Systeme als Infinite-Impulse-Response-Systeme (IIR-Systeme) bezeichnet. IIR-Systeme sind daran zu erkennen, dass zumindest ein Pol \(\alpha_n \) der Übertragungsfunktion nicht im Koordinatenursprung liegt.

Beispiel: Übertragungsfunktion mit einfachen reellen Polen

Die untenstehende Übertragungsfunktion \(G(z) \) soll interpretiert werden. Ihr Zählergrad ist kleiner als der Nennergrad, und sie hat zwei einfache reelle Pole. Die Übertragungsfunktion kann in Partialbrüche zerlegt werden.

\[
G(z) = \frac{3 \cdot z^{-1} - 3.5 \cdot z^{-2}}{1 - 2 \cdot z^{-1} + 0.75 \cdot z^{-2}} = \frac{3 \cdot z - 3.5}{z^2 - 2 \cdot z + 0.75} = \frac{3 \cdot z - 3.5}{(z-0.5) \cdot (z-1.5)}
\]

\[
= \frac{2}{z - 0.5} + \frac{1}{z - 1.5} = \frac{2 \cdot z}{z - 0.5} \cdot z^{-1} + \frac{z}{z - 1.5} \cdot z^{-1}
\]

(6.92)

Durch Rücktransformation errechnet sich die Impulsantwort zu

\[
g[k] = g_1[k] + g_2[k] = 2 \cdot 0.5^{k-1} \cdot \sigma[k-1] + 1.5^{k-1} \cdot \sigma[k-1]
\]

(6.93)

In Bild 6.10 sind die Lage der Pole und Nullstelle sowie die Impulsantwort des Systems dargestellt.

![Pol-Nullstellen-Diagramm](image1.png)

![Zusammensetzung Impulsantwort](image2.png)

Bild 6.10: Lage der Pol- und Nullstellen sowie Impulsantwort bei einfachen reellen Polen

Der Pol an der Stelle \(\alpha_1 = 0.5 \) liegt innerhalb des Einheitskreises, der korrespondierende Teil der Impulsantwort \(g_1[k] \) ist konvergent. Der Pol an der Stelle \(\alpha_2 = 1.5 \) liegt außerhalb des Einheitskreises und führt zu einem divergenten Anteil \(g_2[k] \) an der Impulsantwort. Die Summe der Impulsantworten ist damit divergent. Sobald ein Pol der Übertragungsfunktion außerhalb des Einheitskreises liegt, divergiert die Impulsantwort, und das System ist instabil. Ausführlich wird die Stabilität von Systemen in Abschnitt 6.3.11 diskutiert.
6.3.6 Übertragungsfunktionen mit mehrfachen Polen

Liegt ein N-facher Pol an der Stelle \(\alpha \neq 0 \) vor, ergibt sich für die Partialbruchzerlegung dieses Teils der Übertragungsfunktion der Ansatz

\[
G(z) = \frac{B(z)}{(z - \alpha)^N} = \sum_{n=1}^{N} \frac{A_n}{(z - \alpha)^n}
\]

(6.94)

Die Rücktransformation der einzelnen Summanden kann mit Korrespondenz 9 angegeben werden zu

\[
g_n[k] = A_n \left(\begin{array}{c} n-1 \\ k-1 \end{array} \right) \alpha^{k-n} \cdot \sigma[k-n]
\]

(6.95)

Zum Beispiel ergibt sich für einen zweifachen Pol

\[
g[k] = \sum_{n=1}^{2} A_n \left(\begin{array}{c} n-1 \\ k-1 \end{array} \right) \alpha^{k-n} \cdot \sigma[k-n] = A_1 \cdot \alpha^{k-1} \cdot \sigma[k-1] + A_2 \cdot (k-1) \cdot \alpha^{k-2} \cdot \sigma[k-2]
\]

(6.96)

Die Impulsantwort ist unendlich lang, es handelt sich also um ein IIR-System. Der Ausdruck

\[
\left(\begin{array}{c} k-1 \\ n-1 \end{array} \right) = \frac{(k-1)!}{(n-1)! (k-1-n+1)!} = \frac{(k-1)!}{(n-1)! (k-n)!}
\]

(6.97)

führt zu einem Polynom in \(k \) mit der Ordnung \(n - 1 \). Da die Exponentialfunktion für \(\alpha \neq 1 \) stärker steigt oder fällt als jede Potenz von \(k \), ist die Stabilitätsbetrachtung von diesem Ausdruck unabhängig. Deshalb bestimmt auch in diesem Fall der Betrag des Pols \(\alpha \), ob die Impulsantwort gegen den Wert null konvergiert, und entscheidet damit über die Stabilität des Systems. Der Sonderfall eines Pols mit dem Betrag 1 wird in Abschnitt 6.3.11 diskutiert.

Beispiel: Übertragungsfunktion mit mehrfachen reellen Polen

Die untenstehende Übertragungsfunktion \(G(z) \) soll interpretiert werden. Ihr Zählergrad ist kleiner als der Nennergrad, und sie hat einen doppelten Pol an der Stelle \(\alpha = -0.5 \). Es ergibt sich die Partialbruchzerlegung

\[
G(z) = \frac{z+1}{(z+0.5)^2} = \frac{1}{z+0.5} + \frac{0.5}{(z+0.5)^2} = \frac{z}{z+0.5} \cdot z^{-1} - \frac{-0.5 \cdot z}{(z+0.5)^2} \cdot z^{-1}
\]

(6.98)

Zur Rücktransformation werden die Korrespondenzen 5 und 6 sowie der Verschiebungssatz verwendet.

\[
g[k] = g_1[k] + g_2[k] = (-0.5)^{k-1} \cdot \sigma[k-1] - (k-1) \cdot (-0.5)^{k-2} \cdot \sigma[k-2]
\]

(6.99)

In Bild 6.11 sind die Lage der Nullstelle und Pole sowie die Impulsantwort des Systems dargestellt.
Da der mehrfache Pol innerhalb des Einheitskreises liegt, ist das System stabil. Aufgrund des negativen Vorzeichens sind die beiden Teile der Impulsantwort alternierend, und es ergibt sich eine schwingende Impulsantwort. Besitzt die Übertragungsfunktion einen einfachen oder mehrfachen Pol mit negativem Vorzeichen,

\[G(z) = \frac{z}{z - r \cdot e^{j\omega}} \]

wechselt das Vorzeichen der Impulsantwort des zeitdiskreten Systems. Die Impulsantwort schwingt mit der normierten Kreisfrequenz \(\pi \).

\[g[k] = r^k \cdot e^{j\omega k} \cdot \sigma[k] = r^k \cdot (-1)^k \cdot \sigma[k] \]

Diese Systemeigenschaft besitzt im zeitkontinuierlichen Bereich kein Äquivalent.

6.3.7 Übertragungsfunktion mit konjugiert komplexem Polpaar

Im Fall konjugiert komplexer Polpaare weist die Übertragungsfunktion Partialbrüche der Form

\[G(z) = \frac{A_1}{z - r \cdot e^{j\omega}} + \frac{A_2}{z - r \cdot e^{-j\omega}} = \frac{A}{z - r \cdot e^{j\omega}} + \frac{A^*}{z - r \cdot e^{-j\omega}} = \frac{A \cdot e^{j\omega}}{z - r \cdot e^{j\omega}} + \frac{A \cdot e^{-j\omega}}{z - r \cdot e^{-j\omega}} \]

auf. Damit das System reelle Koeffizienten \(a_n \) und \(b_m \) besitzt, müssen die Koeffizienten der Partialbrüche \(A_1 \) und \(A_2 \) ebenfalls konjugiert komplex zueinander sein. Die Impulsantwort errechnet sich zu

\[g[k] = A \cdot e^{j\omega k} \cdot (r \cdot e^{j\omega})^k \cdot \sigma[k] + A \cdot e^{-j\omega k} \cdot (r \cdot e^{-j\omega})^k \cdot \sigma[k-1]
\]

\[= A \cdot r^k \cdot (e^{j\omega} - e^{-j\omega}) \cdot (e^{j\omega})^k \cdot \sigma[k-1] + 2 \cdot A \cdot r^{k-1} \cdot \cos(\varphi \cdot (k-1) + \varphi_a) \cdot \sigma[k-1] \]

Die Folge ist eine gedämpfte harmonische Folge. Die Phasenlage \(\varphi \) des Polpaares definiert, mit welcher Frequenz die Folge schwingt. Der Betrag der Pole \(r \) ist für das Abfallen beziehungsweise Ansteigen der Amplitude verantwortlich. Die Koeffizienten \(A \) und \(A^* \) bestimmen über die Amplitude und Phasenlage der Impulsantwort. Die Impulsantwort ist wieder unendlich lang, es handelt sich also erwartungsgemäß um ein IIR-System.
Beispiel: Übertragungsfunktion mit konjugiert komplexem Polpaar

Die z-Transformierte G(z) soll in den Zeitbereich zurücktransformiert werden. Ihr Zählergrad ist kleiner als der Nennergrad, und sie hat ein konjugiert komplexes Polpaar an der Stelle $\alpha = +0.5 \pm 0.5j$.

Es ergibt sich die Partialbruchzerlegung

\[
G(z) = \frac{2 \cdot z}{z^2 - z + 0.5} = \frac{1 - j}{z - 0.5 - 0.5j} + \frac{1 + j}{z - 0.5 + 0.5j} = \frac{\sqrt{2} \cdot e^{-j\pi/4}}{z - \frac{1}{\sqrt{2}}} + \frac{\sqrt{2} \cdot e^{j\pi/4}}{z - \frac{1}{\sqrt{2}}}
\]

(6.104)

Die Rücktransformation führt nach den Ausführungen oben zu der Impulsantwort

\[
g[k] = 2 \cdot \sqrt{2} \cdot \left(\frac{1}{\sqrt{2}} \right)^{k-1} \cdot \cos \left(\frac{\pi}{4} (k - 1) - \frac{\pi}{4} \right) \cdot \delta[k - 1]
\]

(6.105)

In Bild 6.12 sind die Lage der Pole und Nullstelle sowie die Impulsantwort des Systems dargestellt.

Die Impulsantwort eines zeitdiskreten Systems mit konjugiert komplexem Polpaar schwingt. Liegen die Pole innerhalb des Einheitskreises nimmt die Amplitude der Schwingung ab.

6.3.8 Übertragungsfunktion mit N-fachem Pol im Koordinatenursprung

Wenn die Übertragungsfunktion G(z) nur Pole an der Stelle $\alpha = 0$ besitzt, sind alle Koeffizienten $a_n = 0$ bis auf den Koeffizienten a_N. Damit gilt

\[
G(z) = \sum_{m=0}^{M} \frac{b_m \cdot z^{-n}}{a_n} = \sum_{m=0}^{N} b_m \cdot z^{-n} + \frac{b_0}{a_N} \cdot z^{-N} + \frac{b_1}{a_N} \cdot z^{-N-1} + \ldots + \frac{b_0}{a_N} \cdot z^{M-N}
\]

(6.106)

Bei kausalen Systemen ist der Zählergrad M kleiner oder gleich dem Nennergrad N. Damit sind alle Exponenten der komplexen Variablen z kleiner oder gleich null, und es kann der Verschiebungssatz der z-Transformation angewendet werden. Die Impulsantwort ergibt sich damit zu

\[
g[k] = \frac{b_0}{a_N} \cdot \delta[k - N] + \frac{b_1}{a_N} \cdot \delta[k - N + 1] + \ldots + \frac{b_N}{a_N} \cdot \delta[k - N + M]
\]

(6.107)
Die Impulsantwort besteht aus \(N + 1 \) Impulsen. Die Koeffizienten der Impulse entsprechen den Koeffizienten der Übertragungsfunktion \(G(z) \). Im Gegensatz zu den bisher behandelten Impulsantworten ist sie nur an \(N + 1 \) Stellen von null verschieden. Deshalb werden die Impulsantwort als Finite-Impulse-Response und die Systeme als Finite-Impulse-Response-Systeme (FIR-Systeme) bezeichnet.

Beispiel: N-facher Pol im Koordinatenursprung

Die Übertragungsfunktion \(G(z) \) soll in den Zeitbereich zurücktransformiert werden. Sie hat einen 4-fachen Pol an der Stelle \(\alpha = 0 \). Das System besitzt eine endliche Impulsantwort.

\[
G(z) = \frac{z^4 + 2 \cdot z^3 + 3 \cdot z^2 + 2 \cdot z + 1}{9 \cdot z^4} = \frac{1}{9} \left(1 + 2 \cdot z^{-1} + 3 \cdot z^{-2} + 2 \cdot z^{-3} + 1 \cdot z^{-4}\right)
\]

(6.108)

Mit dem Verschiebungssatz der z-Transformation ergibt sich im Zeitbereich die Folge

\[
g[k] = \frac{1}{9} \delta[k] + \frac{2}{9} \delta[k - 1] + \frac{3}{9} \delta[k - 2] + \frac{2}{9} \delta[k - 3] + \frac{1}{9} \delta[k - 4]
\]

(6.109)

6.3.9 Übertragungsfunktion invertierbarer Systeme

Bei der Übertragung von Signalen ist es unter Umständen erforderlich, Verzerrungen einer Übertragungsstrecke zu kompensieren. Dazu wird ein System verwendet, das ein inverses Systemverhalten aufweist. Angenommen ein Signal wird über ein System \(G_1(z) \) übertragen, das die Form

\[
G_1(z) = \frac{z - \beta}{z - \alpha}
\]

aufweist. Zur Kompensation wird ein System verwendet, das im Idealfall folgende Bedingung erfüllt

\[
G_1(z) \cdot G_2(z) = 1
\]

(6.111)

In diesem Fall würden die Verzerrungen, die durch die Signalübertragung im System \(G_1(z) \) entstanden sind, ideal kompensiert. Auflösen der Bedingung führt zu der Übertragungsfunktion
6.3 Interpretation der Übertragungsfunktion

\[G_2(z) = \frac{1}{G_1(z)} = \frac{1}{\frac{z-\beta}{z-\alpha}} = \frac{z-\alpha}{z-\beta} \] (6.112)

6.3.10 Zusammenfassung Interpretation der Übertragungsfunktion

Bei der Interpretation von Übertragungsfunktionen werden unterschiedliche Systemeigenschaften aufgezeigt. Tabelle 6.4 fasst die an der Übertragungsfunktion ablesbaren Systemeigenschaften zusammen. Der Zusammenhang zwischen Pollage und Impulsantwort ist für einfache reelle Pole und für konjugiert komplexe Polpaare in
Tabelle 6.5 zusammengestellt.

Im Online-Portal Systemtheorie Online verdeutlicht die Applikation Komplexe Exponentialfolge den Zusammenhang zwischen der Pollage in der komplexen Ebene und dem Verhalten der Signalfolge.
Tabelle 6.4: Tabellarische Übersicht der an der Übertragungsfunktion ablesbaren Systemeigenschaften

<table>
<thead>
<tr>
<th>Eigenschaft</th>
<th>Übertragungsfunktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kausalität</td>
<td>Zählergrad $M \leq$ Nennergrad N</td>
</tr>
<tr>
<td>Sprungfähigkeit</td>
<td>Zählergrad $M = Nennergrad N$</td>
</tr>
<tr>
<td>Schwingungsneigung</td>
<td>negative reelle Pole oder konjugiert komplexe Polpaare</td>
</tr>
<tr>
<td>System mit endlicher Impulsantwort</td>
<td>Finite-Impulse-Response (FIR-System)</td>
</tr>
<tr>
<td>Alle Pole im Koordinatenursprung</td>
<td></td>
</tr>
<tr>
<td>System mit unendlicher Impulsantwort</td>
<td>Infinite-Impulse-Response (IIR-System)</td>
</tr>
<tr>
<td>Mindestens ein Pol nicht</td>
<td>im Koordinatenursprung</td>
</tr>
<tr>
<td>Stabile invertierbare Systeme</td>
<td>Pole und Nullstellen innerhalb des Einheitskreises, Zählergrad $M = Nennergrad N</td>
</tr>
<tr>
<td>Verstärkung</td>
<td>Übertragungsfunktion $G(z = 1)$</td>
</tr>
</tbody>
</table>
Tabelle 6.5: Zusammenhang zwischen Pollage und Impulsantwort

<table>
<thead>
<tr>
<th>Pollage</th>
<th>Impulsantwort</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
6.3.11 Stabilität und Pole der Übertragungsfunktion

Bei der Einführung des Begriffes der Stabilität in Abschnitt 4.4.4 wird gezeigt, dass asymptotisch stabile Systeme eine abklingende Impulsantwort aufweisen müssen. Die Übertragungsfunktion \(G(z) \) ist die \(z \)-Transformierte der Impulsantwort \(g[k] \). Deshalb kann die Stabilitätsbetrachtung auch im \(z \)-Bereich erfolgen. Liegen ausschließlich Pole mit einem Betrag \(|\alpha_n| < 1 \) vor, konvergiert die Impulsantwort \(g[k] \) für \(k \to \infty \) gegen null. Das System ist asymptotisch stabil. Liegt mindestens ein Pol mit einem Betrag \(|\alpha| < 1 \) vor, divergiert die Impulsantwort. Das System ist instabil. Bei einem Pol mit einem Betrag \(|\alpha| = 1 \) entscheidet die Mehrfachheit über die Konvergenz. Zu der Übertragungsfunktion

\[
G(z) = \frac{B(z)}{(z - e^{-j\omega})^N} = \sum_{n=1}^{N} A_n \left(z - e^{-j\omega} \right)^n
\]

gehört die Impulsantwort

\[
g[k] = \sum_{n=1}^{N} A_n \cdot \left(\frac{k-1}{n-1} \right) \cdot e^{j\omega(k-n)} \cdot \sigma[k-n]
\]

Der Binomialkoeffizient zum Beispiel für \(n = 2 \) zu einem Faktor

\[
\binom{k-1}{2-1} = \frac{(k-1)!}{(2-1)! \cdot (k-2)!} = (k-1)
\]

Der Faktor steigt linear mit dem Folgenindex \(k \). Er wird mit einer Exponentialfunktion multipliziert, deren Betrag konstant ist. Damit divergiert die Impulsantwort für eine Vielfachheit \(N \geq 2 \).

Beispiel: Stabilitätsnachweis über Pollage

Ein System mit der Übertragungsfunktion

\[
G(z) = \frac{1}{z^3 + 0.1 \cdot z^2 - 0.25 \cdot z - 0.025}
\]

\[
G(z) = \frac{1}{(z + 0.5) \cdot (z + 0.1) \cdot (z - 0.5)}
\]

Alle Pole weisen einen Betrag \(r < 1 \) auf, das System ist damit stabil.

Beispiel: Stabilitätsprüfung eines Systems mit doppeltem Pol

Ein System mit der Übertragungsfunktion

\[
G(z) = \frac{1}{(z - 0.2) \cdot (z + 1)^2}
\]
weist einen Pol an der Stelle $\alpha_1 = 0.2$ und einen doppelten Pol an der Stelle $\alpha_2 = -1$ auf. Es ergeben sich die Partialbruchdarstellung
\[G(z) = \frac{1}{(z - 0.2) \cdot (z + 1)^2} = \frac{0.6944}{z - 0.2} - \frac{0.6944}{z + 1} + \frac{1.25}{(z + 1)^2} \] (6.119)

und die Impulsantwort
\[g[k] = 0.6944 \cdot 0.2^{k-1} \cdot \sigma[k-1] - 0.6944 \cdot (-1)^{k-1} \cdot \sigma[k-1] + 1.25 \cdot (k - 1) \cdot (-1)^{k-1} \cdot \sigma[k-1] \] (6.120)

Wegen des letzten Summenden divergiert die Impulsantwort. Er ergibt sich aus dem doppelten Pol α_2 mit einem Betrag von $|\alpha_2| = 1$. Das System ist instabil.

Die Analyse der Pollage führt zu einer Stabilitätsbewertung, die in Tabelle 6.6 zusammengefasst ist. Unter Berücksichtigung der in Bild 5.2 gezeigten Abbildung vom Laplace-Bereich in den z-Bereich entsprechen die Stabilitätskriterien denen zeitkontinuierlicher Systeme im Laplace-Bereich.

<table>
<thead>
<tr>
<th>Eigenschaft</th>
<th>Pole α_n der Übertragungsfunktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asymptotisch stabiles System</td>
<td>Alle Pole α_n besitzen einen Betrag $</td>
</tr>
<tr>
<td>Grenzstabiles System</td>
<td>Alle Lösungen α_n besitzen einen Betrag $</td>
</tr>
<tr>
<td>Instabiles System</td>
<td>Es existiert mindestens eine Lösung α_n mit einem Betrag $</td>
</tr>
</tbody>
</table>

Diese Diskussion der Pollage entspricht der Diskussion von Lösungen der charakteristischen Gleichung in Abschnitt 4.3.3. Bei der Pollage werden die Pole der Übertragungsfunktion bestimmt:
\[\alpha^N + a_1 \cdot \alpha^{N-1} + a_2 \cdot \alpha^{N-2} + \ldots + a_N = 0 \] (6.121)

In Abschnitt 4.3.3 werden die Lösungen der charakteristischen Gleichung analysiert.
\[\lambda^N + a_1 \cdot \lambda^{N-1} + a_2 \cdot \lambda^{N-2} + \ldots + a_N = 0 \] (6.122)

6.4 Analyse und Simulation zeitdiskreter Systeme mit MATLAB

6.4.1 Interpretation der Übertragungsfunktion mit MATLAB

Neben den MATLAB-Funktionen, die bei der z-Transformation behandelt werden, bietet MATLAB die Möglichkeit, eine Übertragungsfunktion im z-Bereich zu definieren und zu interpretieren. Tabelle 6.7 stellt einige MATLAB-Befehle zur Interpretation von Übertragungsfunktionen zusammen. Dabei wird bei der Übertragungsfunktion von folgender Darstellungsform ausgegangen:

\[
G(z) = \frac{Y(z)}{X(z)} = \sum_{m=0}^{N} b_m \cdot z^m = \sum_{n=0}^{M} a_n \cdot z^n
\]

(6.123)

Tabelle 6.7: Tabellarische Übersicht über Befehle zur Interpretation von Übertragungsfunktionen in MATLAB

<table>
<thead>
<tr>
<th>Befehl</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>G = tf([bM ... b0],[aN ... a0],TA);</td>
<td>Definition der Übertragungsfunktion über Zähler- und Nennerpolynom sowie der Abtastzeit TA</td>
</tr>
<tr>
<td>zero(G)</td>
<td>Berechnung der Nullstellen der Übertragungsfunktion</td>
</tr>
<tr>
<td>pole(G)</td>
<td>Berechnung der Pole der Übertragungsfunktion</td>
</tr>
<tr>
<td>pzmap(G)</td>
<td>Darstellung der Pole und Nullstellen in der z-Ebene</td>
</tr>
<tr>
<td>impulse(G)</td>
<td>Berechnung / Darstellung der Impulsantwort</td>
</tr>
<tr>
<td>step(G)</td>
<td>Berechnung / Darstellung der Sprungantwort</td>
</tr>
</tbody>
</table>

Einige dieser Funktionen haben Erweiterungen, die sich aus der MATLAB-Hilfe ergeben und die hier nicht detailliert dargestellt werden sollen.

Beispiel: Interpretation der Übertragungsfunktion mit MATLAB

Zur Interpretation der Übertragungsfunktion mit MATLAB wird das Beispiel einer Übertragungsfunktion mit konjugiert komplexen Polstellen aufgegriffen, um die MATLAB-Ergebnisse mit den analytisch berechneten Ergebnissen vergleichen zu können. Die Übertragungsfunktion lautet:

\[
G(z) = \frac{2 \cdot z}{z^2 - z + 0.5}
\]

(6.124)

Die Definition erfolgt über die Koeffizienten von Zähler- und Nennerpolynom, die jeweils als Vektor dargestellt werden. Dabei ist zu beachten, dass MATLAB die Koeffizienten der höchsten Potenz von z als ersten Wert erwartet. Um MATLAB anzuzeigen, dass es sich um ein zeitdiskretes System handelt, wird die Abtastzeit als dritter Parameter angegeben. Hier wird die Abtastzeit \(T_A = 1\) gewählt.
% Definition der Übertragungsfunktion
b = [2 0];
a = [1 -1 0.5];
ta = 1;
g = tf(b,a,ta);

Ist die Übertragungsfunktion definiert, können Pole und Nullstellen berechnet werden. Weiterhin ist die Darstellung der Pole und Nullstellen in der z-Ebene möglich.

% Berechnung der Pole und Nullstellen
pole(g);
zero(g);

% Darstellung der Pole und Nullstellen in der komplexen z-Ebene
pzmap(g);

Mit diesen Befehlen gibt MATLAB die Pole und Nullstellen an und stellt sie wie in Bild 6.15 als Grafik dar.

![Pole-Nullstellen-Diagramm](image)

Bild 6.15: Pole und Nullstellen in der komplexen z-Ebene (Befehl pzmap)

Dabei wird neben den Polen und Nullstellen gleich der Einheitskreis mit eingezeichnet, um die Stabilitätseigenschaften direkt ablesen zu können.

Die Impuls- und Sprungantworten werden mit dem Befehlen impulse(g,10) und step(g,10) dargestellt, wobei der Parameter 10 den größten Folgenindex festlegt.

% Darstellung der Impulsantwort
subplot(1,2,1);
impulse(g,10);

% Darstellung der Sprungantwort
subplot(1,2,2);
step(g,10);

MATLAB stellt die Ergebnisse als Stufenfunktion dar. Für das Beispiel ergeben sich die in Bild 6.16 dargestellten Signalverläufe.
Alternativ kann die Grafik unterdrückt und die Ergebnisse als Vektor abgespeichert werden.

% Ergebnis der Sprungantwort
[y1,t] = impulse(g,10);
[y2,t] = step(g,10);

Weitere Informationen zu dem Verfahren können der MATLAB-Hilfe entnommen werden.

6.4.2 Simulation eines zeitdiskreten Systems mit SIMULINK

Signalquellen

Tabelle 6.8: Auswahl von Signalquellen in SIMULINK

<table>
<thead>
<tr>
<th>Signalquelle</th>
<th>SIMULINK Symbol</th>
<th>Signalquelle</th>
<th>SIMULINK Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Konstante</td>
<td>Constant</td>
<td>Sinusfunktion</td>
<td>Sine Wave</td>
</tr>
<tr>
<td>Sprungfunktion</td>
<td>Step</td>
<td>Definition in Eingangsvariable</td>
<td>From Workspace</td>
</tr>
<tr>
<td>Rampenfunktion</td>
<td>Ramp</td>
<td>Definition in mat-File</td>
<td>From File</td>
</tr>
<tr>
<td>Rechteckfunktion</td>
<td>Pulse Generator</td>
<td>Zeit</td>
<td>Clock</td>
</tr>
</tbody>
</table>

Signalpfade und Verknüpfung von Signalpfaden

SIMULINK definiert Systeme über das Verbinden von Funktionsblöcken mit Signalpfaden. Zum Beispiel könnte ein System, das die Gleichung

\[y[k] = 3 \cdot x[k] + 5 \]

(6.125)
erfüllt, in SIMULINK über das Modell in Bild 6.17 dargestellt werden.

![Bild 6.17: Einfaches SIMULINK Modell](image)

Die Signalpfade laufen durch Blöcke, die eine definierte Funktion ausführen. Diese Funktion kann neben Additionen, Subtraktion, Multiplikation und Division auch eine höhere mathematische Funktion sein, die als Math-Function-Block definiert wird. Mit den Blöcken Multiplexer und Demultiplexer können Signale zu einem mehrdimensionalen Signalpfad zusammengefasst beziehungsweise von einem Signalpfad in einzelne Signale zerlegt werden. Tabelle 6.9 stellt eine Auswahl von Verknüpfungen in SIMULINK dar.
Elementare Übertragungsglieder

Neben fest definierten Übertragungsgliedern wie Verzögerung, Ableitung oder Integral bietet SIMULINK die Möglichkeit, Übertragungsglieder über ihre z-Transformierte selbst zu definieren. Die Übertragungsglieder können als gebrochen rationale Funktion oder in Linearfaktor-Schreibweise definiert werden. Tabelle 6.10 zeigt eine Auswahl von Funktionsblöcken für zeitdiskrete Übertragungsfunktionen in SIMULINK.

Tabelle 6.9: Auswahl von Funktionen zur Signalverknüpfung

<table>
<thead>
<tr>
<th>Operation</th>
<th>SIMULINK Symbol</th>
<th>Operation</th>
<th>SIMULINK Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addition von Signalen</td>
<td></td>
<td>Multiplikation / Division von Signalen</td>
<td></td>
</tr>
<tr>
<td>Multiplikation mit einem Faktor</td>
<td></td>
<td>mathematische Funktionen</td>
<td></td>
</tr>
<tr>
<td>Multiplexer</td>
<td></td>
<td>Demultiplexer</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 6.10: Auswahl von zeitdiskreten Übertragungsfunktionen in SIMULINK

<table>
<thead>
<tr>
<th>Übertragungsfunktion</th>
<th>SIMULINK Symbol</th>
<th>Übertragungsfunktion</th>
<th>SIMULINK Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verzögerung</td>
<td></td>
<td>Pol-Nullstellen Übertragungsfunktion</td>
<td></td>
</tr>
<tr>
<td>Ableitung</td>
<td></td>
<td>Gebrochen rationale Übertragungsfunktion</td>
<td></td>
</tr>
<tr>
<td>Integral</td>
<td></td>
<td>Gewichteter Mittelwert</td>
<td></td>
</tr>
<tr>
<td>Zero-Order-Hold</td>
<td></td>
<td>First-Order-Hold</td>
<td></td>
</tr>
</tbody>
</table>
Signalsenken

Tabelle 6.11: Auswahl von Signalsenken in SIMULINK

<table>
<thead>
<tr>
<th>Signalsenke</th>
<th>SIMULINK Symbol</th>
<th>Signalsenke</th>
<th>SIMULINK Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numerische Anzeige</td>
<td></td>
<td>Grafische Darstellung</td>
<td></td>
</tr>
<tr>
<td>Speicherung in AusgangsvARIABLE</td>
<td> To Workspace</td>
<td>Speicherung in mat-File</td>
<td> To File</td>
</tr>
</tbody>
</table>

Simulationsvarianten zeitdiskreter Systeme

Zeitdiskrete Systeme können auf zweierlei Arten simuliert werden:

- **Fixed-Step-Simulation**
- **Variable-Step-Simulation**

Beispiel: Vergleich einer zeitkontinuierlichen und zeitdiskreten Simulation

Zur Verdeutlichung der beiden Simulationsarten wird das System mit der Übertragungsfunktion

\[G(z) = \frac{2 \cdot z}{z^2 - z + 0.5} \] \hspace{1cm} (6.126)

einmal mit konstanter Schrittweite (Bild 6.19) und einmal zeitkontinuierlich mit Halteglied (Bild 6.20) simuliert. Das digitale Signal wird anschließend mit einem analogen Tiefpass gefiltert.

Bild 6.19: SIMULINK-Modell für eine Fixed-Step-Simulation

Bild 6.20: SIMULINK-Modell für eine Variable-Step-Simulation

Bei der zeitdiskreten Simulation werden nur Werte zu den Abtastzeiten \(k \cdot T_A \) ausgegeben. Damit kann aber auch das Einschwingverhalten des zeitkontinuierlichen Tiefpasses nur an den Zeitpunkten \(k \cdot T_A \) berechnet werden. Bild 6.21 vergleicht die Simulationsergebnisse für zeitdiskrete und zeitkontinuierliche Simulation.
Bei Aufgabenstellungen mit Signalrekonstruktion oder anderen zeitkontinuierlichen Vorgängen ist es demnach erforderlich, eine zeitkontinuierliche Simulation durchzuführen und die zeitdiskrete Signalverarbeitung über Zero-Order-Hold-Blöcke zu modellieren.
6.5 Literatur

6.5.1 Literaturstellen mit besonders anschaulicher Darstellung

6.5.2 Literaturstellen mit praktischen Anwendungen

6.5.3 Literatur zu MATLAB

[Schw07] Schweizer, Wolfgang: MATLAB kompakt, Oldenbourg Verlag München, 2007

6.5.4 Weiterführende Literatur

6.5.5 Literatur zum Projekt

[]
6.6 Übungsaufgaben – Zeitdiskrete Systeme im z-Bereich

6.6.1 Übertragungsfunktion und Kausalität eines Systems
Gegeben ist ein System mit der Übertragungsfunktion
\[G(z) = \frac{z^4 + 1}{12 \cdot z^4 - 14 \cdot z^2 + 6z^2 + z - 1} \]
a) Wie lautet die Differenzengleichung des Systems?
b) Wie müssen Sie M wählen, damit das System kausal ist?
c) Welchen Endwert besitzt die Sprungantwort des Systems für \(k \to \infty \)?

6.6.2 Sprung- und Impulsantwort zeitdiskreter Systeme
Gegeben ist die z-Transformierte \(H(z) \) der Sprungantwort \(h[k] \) eines Systems:
\[H(z) = \frac{2 \cdot z^2}{2 \cdot z^3 - 4 \cdot z^2 + 3 \cdot z - 1} \]
a) Skizzieren Sie die Pole und Nullstellen der Übertragungsfunktion \(G(z) \).
b) Ist das System stabil?
c) Wie lautet die Differenzengleichung des Systems?

6.6.3 Sprungantwort eines Infinite-Impulse-Response-Systems
Gegeben ist die Übertragungsfunktion
\[G(z) = \frac{-z^7 + z^6 + z^3 - 2 \cdot z^2 + z - 1}{z^7} \]
a) Wie lautet die Sprungantwort \(h[k] \) des Systems?
b) Zeichnen Sie die Sprungantwort.
c) Geben Sie eine geschlossene Darstellung der Sprungantwort an.

6.6.4 Differenzengleichung und Sprungantwort eines Systems
Ein System ist definiert durch seine Differenzengleichung
\[9 \cdot y[k] - 6 \cdot y[k - 1] + y[k - 2] = 9 \cdot u[k - 1] \]
a) Welche Übertragungsfunktion besitzt das System?
b) Berechnen Sie die Sprungantwort \(h[k] \).
c) Zeichnen Sie die Sprungantwort für \(k = 0, 1, 2, \ldots, 5 \).
6.6.5 Übertragungsfunktion und Verstärkung eines Systems

Die Sprungantwort eines Filters lautet

\[h[k] = c \cdot \left(1 - \frac{1}{2^k} \right) \cdot \sigma[k]. \]

a) Berechnen Sie die zugehörige Übertragungsfunktion \(G(z) \) des Systems.

b) Welchen Wert muss \(c \) annehmen, damit das System die Verstärkung 3 besitzt?

6.6.6 Übertragungsfunktion eines Systems mit Konvergenzbereich

Gegeben ist ein System mit der Impulsantwort

\[g[k] = k \cdot e^{-2k} \cdot \left(1 + k \cdot e^{-k} \right) \cdot \sigma[k] \]

a) Berechnen Sie die Übertragungsfunktion \(G(z) \) und geben Sie den zugehörigen Konvergenzbereich in der \(z \)-Ebene an.

b) Welchem Wert strebt die Sprungantwort für \(k \to \infty \) zu?

6.6.7 Differenzengleichung und Übertragungsfunktion

Gegeben ist die Differenzengleichung eines zeitdiskreten Systems.

\[12 \cdot y[k] = 7 \cdot y[k-1] - y[k-2] + 2 \cdot u[k-1] - u[k-2] + 3 \cdot u[k-3] \]

a) Bestimmen Sie die Übertragungsfunktion des Systems.

b) Berechnen Sie die zugehörige Impulsantwort \(g[k] \).

c) Berechnen Sie die Sprungantwort \(h[k] \) des Systems.

6.6.8 Interpretation der Übertragungsfunktion eines Systems

Ein System wird durch folgende Differenzengleichung beschrieben:

\[y[k] = u[k-1] - y[k-1] - 0.5 \cdot y[k-2] \]

a) Berechnen Sie die Übertragungsfunktion \(G(z) \) des Systems.

b) Berechnen Sie die Pole der Übertragungsfunktion \(G(z) \). Welche Systemeigenschaften lassen sich an der Pollage ablesen? Begründen Sie Ihre Antwort.

c) Berechnen Sie die Impulsantwort \(g[k] \) des Systems mithilfe der Partialbruchzerlegung und Rücktransformation einzelner Partialbrüche.

d) Bestimmen Sie die Werte der Sprungantwort \(h[k] \) des Systems für \(k = 0 \ldots 5 \).
6.6.9 Systementwurf durch Diskretisierung der Impulsantwort

Ein analoges System mit der Impulsantwort

\[g(t) = t \cdot e^{-\frac{t}{2}} \cdot \sigma(t) \]

soll durch ein digitales Filter mit einer endlichen Impulsantwort nachgebildet werden. Dazu werden sechs Werte der Impulsantwort \(g(t) \) in einem Abstand \(T_A = 3 \) abgetastet.

a) Bestimmen Sie die Abtastfolge \(g[k] \) für die \(k = 0 \ldots 5 \).
b) Berechnen Sie die \(z \)-Transformierte \(G(z) \) des digitalen Systems.
c) Geben Sie eine allgemeine Gleichung für den Folgenwert \(y[k] \) für beliebige Eingangsfolgen \(x[k] \) des Filters an.

Für analoge Systeme berechnet sich die Sprungantwort aus

\[h(t) = \int_{0}^{t} g(\tau) \, d\tau \]

d) Wie würden Sie die Sprungantwort \(h[k] \) des zeitdiskreten Systems berechnen, dass identisch ist mit den Abtastwerten \(h(k \cdot T_A) \) ist? Begründen Sie Ihre Antwort.
e) Geben Sie die ersten sechs Werte dieser Sprungantwort \(h[k] \) an.
6.7 Musterlösung – Zeitdiskrete Systeme im z-Bereich

6.7.1 Übertragungsfunktion und Kausalität eines Systems

a) Die Übertragungsfunktion ist definiert als

\[G(z) = \frac{Y(z)}{U(z)} = \frac{z^M + 1}{12 \cdot z^4 - 14 \cdot z^3 + 6z^2 + z - 1} \]

Multiplikation mit den beiden Nennern führt zu

\[Y(z) \cdot (12 \cdot z^4 - 14 \cdot z^3 + 6z^2 + z - 1) = (z^M + 1) \cdot U(z) \]

Division durch die höchste feste Potenz von \(z \)

\[Y(z) \cdot (12 - 14 \cdot z^{-1} + 6z^{-2} + z^{-3} - z^{-4}) = (z^{M-4} + z^{-4}) \cdot U(z) \]

Rücktransformation in den Zeitbereich ergibt

\[y[k] = 12 \cdot y[k - 1] + y[k - 2] \cdot 6 + y[k - 3] - y[k - 4] = u[k - 4] + u[k - (4 - M)] \]

Auflösen nach \(y[k] \) führt schließlich zu der Gleichung

\[y[k] = \frac{1}{12} \left(u[k - 4] + u[k - (4 - M)] + y[k - 1] \cdot 14 - y[k - 2] \cdot 6 - y[k - 3] + y[k - 4] \right) \]

b) Das System ist kausal, wenn das Nennerpolynom vom Grad größer beziehungsweise gleich dem Grad des Zählerpolynoms ist. \(M \) kann kleiner beziehungsweise gleich 4 sein. Für \(M = 4 \) ergibt sich die Übertragungsfunktion

\[G(z) = \frac{Y(z)}{U(z)} = \frac{z^4 + 1}{12 \cdot z^4 - 14 \cdot z^3 + 6z^2 + z - 1} \]

und damit die Differenzengleichung

\[y[k] = \frac{1}{12} \left(u[k] + u[k - 4] + 14 \cdot y[k - 1] - 6 \cdot y[k - 2] - y[k - 3] - y[k - 4] \right) \]

c) Um den Endwert der Sprungantwort \(h[k] \) zu berechnen, ist die Übertragungsfunktion bei \(z = 1 \) zu betrachten.

\[\lim_{k \to \infty} h[k] = G(1) = \frac{1+1}{12 \cdot 1 - 14 \cdot 1 + 6 \cdot 1 + 1 - 1} = \frac{1}{2} \]

Das Ergebnis kann mit der Simulation des Ausgangssignals verifiziert werden.
6.7.2 Sprung- und Impulsantwort zeitdiskreter Systeme

a) Die Pole des Systems werden aus der Nenner-Übertragungsfunktion berechnet, dazu muss die Übertragungsfunktion $G(z)$ berechnet werden.

$$H(z) = \frac{2 \cdot z^2}{2 \cdot z^3 - 4 \cdot z^2 + 3 \cdot z - 1} = \frac{z^2}{z^3 - 2 \cdot z^2 + \frac{3}{2} \cdot z - \frac{1}{2}}$$

$$G(z) = H(z) \cdot \frac{z - 1}{z} = \frac{2 \cdot z^2}{2 \cdot z^3 - 4 \cdot z^2 + 3 \cdot z - 1} \cdot \frac{z - 1}{z} = \frac{2 \cdot z^2}{(2 \cdot z^2 - 4 \cdot z + 1) \cdot (z - 1)} \cdot \frac{z - 1}{z} = \frac{2 \cdot z}{2 \cdot z^3 - 2 \cdot z + 1}$$

Die Pole sind ein konjugiert komplexes Polpaar.

$$z_{12} = 1 \pm \frac{1}{2} \cdot j$$

Die Nullstelle ist einfach und reell, sie liegt im Koordinatenursprung.

$$z = 0$$

c) Die Differenzengleichung des Systems wird aus der Übertragungsfunktion hergeleitet.

$$G(z) = \frac{Y(z)}{U(z)} = \frac{2 \cdot z}{2 \cdot z^2 - 2 \cdot z + 1}$$

Multiplizieren mit den beiden Nennern führt zu

$$Y(z) \cdot (2 \cdot z^2 - 2 \cdot z + 1) = 2 \cdot z \cdot U(z)$$

Division durch die höchste Potenz von z ergibt

$$Y(z) \cdot (2 - 2 \cdot z^{-1} + z^{-2}) = 2 \cdot z^{-1} \cdot U(z)$$

Die Differenzengleichung ergibt sich mit der Verschiebungsregel zu

$$2 \cdot y[k] - 2 \cdot y[k - 1] + y[k - 2] = 2 \cdot u[k - 1]$$
6.7.3 Sprungantwort eines Infinite-Impulse-Response-Systems

a) Um die Sprungantwort zu berechnen, wird die Übertragungsfunktion in den diskreten Zeitbereich transformiert.

\[G(z) = \frac{-z^7 + z^6 + z^5 - 2 \cdot z^3 + z - 1}{z} = -1 + z^{-1} + z^{-4} - 2 \cdot z^{-5} + z^{-6} - z^{-7} \]

Rücktransformation mit der Verschiebungsregel führt zu

\[g[k] = -\delta[k] + \delta[k-1] + \delta[k-4] - 2 \cdot \delta[k-5] + \delta[k-6] - \delta[k-7] \]

Die daraus entstandene Folge \(g[k] \) kann direkt für die Werte \(k = 0 \ldots 7 \) abgelesen werden. Um daraus die Sprungantwort \(h[k] \) zu erhalten, wird die Impulsantwort summiert.

\[h[k] = T_k \cdot \sum_{i=0}^{k} g[i] \]

\[
\begin{array}{cccccccc}
 k & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
 g[k] & -1 & 1 & 0 & 0 & 1 & -2 & 1 & -1 \\
 h[k] & -1 & 0 & 0 & 0 & 1 & -1 & 0 & -1 \\
\end{array}
\]

b) Die berechneten Werten ergeben folgendes Diagramm.

c) Die Sprungantwort \(h[k] \) ist die Summe über alle Impuls der Impulsantwort \(g[k] \). Damit wird aus jedem Impuls \(\delta \) der Impulsantwort ein Sprung \(\sigma \), und es ergibt sich

\[h[k] = -\sigma[k] + \sigma[k-1] + \sigma[k-4] - 2 \cdot \sigma[k-5] + \sigma[k-6] - \sigma[k-7] \]
6.7.4 Differenzengleichung und Sprungantwort eines Systems

a) Um die Übertragungsfunktion zu berechnen, wird die Folge in den z-Bereich transformiert und nach G(z) umgestellt. Aus der Differenzengleichung

\[9 \cdot y[k] - 6 \cdot y[k-1] + y[k-2] = 9 \cdot u[k-1] \]

ergibt sich mit der Verschiebungsregel die z-Transformierte

\[Y(z) \cdot (9 \cdot z^{-1} + z^{-2}) = 9 \cdot U(z) \cdot z^{-1} \]

Durch Division ergibt sich die Übertragungsfunktion

\[G(z) = \frac{Y(z)}{U(z)} = \frac{9 \cdot z^{-1}}{(9 \cdot z^{-1} + z^{-2})} = \frac{9 \cdot z}{(9 \cdot z^{-1} - z)} = \frac{z}{z^{-\frac{2}{3}} \cdot z^{-1} + \frac{1}{9}} = \frac{z}{z^{-\frac{1}{3}}} \]

b) Die Sprungantwort wird über die z-Transformierte H(z) berechnet. Sie ergibt sich aus

\[H(z) = \frac{z}{z^{-1}} \cdot \frac{z}{(z - 1)^2} = \frac{z^2}{z^{-1} \cdot (z - 1)^2} = A + B \cdot \frac{C}{z - \frac{1}{3}} \]

Koeffizientenvergleich führt zu den Koeffizienten

\[A = \frac{9}{4}, \quad B = -\frac{5}{4}, \quad C = \frac{1}{6} \]

Es ergibt sich folgende Darstellung in Partialbrüchen:

\[H(z) = \frac{9}{4} \cdot z^{-1} - \frac{5}{4} \cdot \frac{1}{z - \frac{1}{3}} - \frac{1}{6} \cdot \frac{1}{z - \frac{1}{3}} \]

Rücktransformation mit der Korrespondenztafel führt zu der Sprungantwort

\[h[k] = \frac{9}{4} \cdot \sigma[k-1] - \frac{5}{4} \cdot \frac{1}{\sigma[k-1]} \cdot \sigma[k-1] - \frac{1}{2} \cdot (k-1) \cdot \frac{1}{\sigma[k-1]} \cdot \sigma[k-1] \]

Koeffizientenvergleich führt zu den Koeffizienten

\[A = \frac{9}{4}, \quad B = -\frac{5}{4}, \quad C = \frac{1}{6} \]

c) Es ergeben sich die Werte

<table>
<thead>
<tr>
<th>(k)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>(h[k])</td>
<td>0</td>
<td>1</td>
<td>5/3</td>
<td>2</td>
<td>58/27</td>
<td>179/81</td>
</tr>
</tbody>
</table>
6.7.5 Übertragungsfunktion und Verstärkung eines Systems

a) Die Sprungantwort kann umgeformt werden zu

\[h[k] = c \cdot \left(1 - \frac{1}{2^k} \right) \cdot \sigma[k] = \left(c - c \cdot \left(\frac{1}{2} \right)^k \right) \cdot \sigma[k] \]

Mit den Korrespondenzen der z-Transformation kann die z-Transformierte bestimmt werden zu

\[H(z) = \frac{c \cdot z}{z-1} - \frac{c \cdot z}{z - \frac{1}{2}} \]

Damit lautet die Übertragungsfunktion \(G(z) \)

\[G(z) = H(z) \cdot \frac{z-1}{z} = \frac{c \cdot z}{z-1} \cdot \frac{z-1}{z} - \frac{c \cdot z}{z - \frac{1}{2}} \cdot \frac{z-1}{z} = \frac{c \cdot \left(\frac{1}{2} \right)}{\left(\frac{1}{2} \right)} = \frac{c}{2} \]

b) Um die Verstärkung zu berechnen, wird \(z = 1 \) gesetzt.

\[G(1) = 3 = \frac{c}{2} = c \]

Die Verstärkung ist \(c \). Damit sie gleich 3 ist, muss \(c = 3 \) gewählt werden.

6.7.6 Übertragungsfunktion eines Systems mit Konvergenzbereich

a) Die Übertragungsfunktion \(G(z) \) ist die z-Transformierte der Impulsantwort. Sie kann umgeformt werden zu

\[g[k] = (k \cdot e^{-2k} + k^2 \cdot e^{-3k}) \cdot \sigma[k] = k \cdot e^{-2k} \cdot \sigma[k] + k^2 \cdot e^{-3k} \cdot \sigma[k] \]

Mit den Korrespondenzen der z-Transformation ergibt sich

\[G(z) = \frac{z \cdot e^{-2} + z \cdot e^{-3} \cdot (z + e^{-3})}{(z - e^{-2})^2 + (z - e^{-3})^2} \]

b) Mit dem Endwertsatz der z-Transformation gilt

\[\lim_{k \to \infty} h[k] = G(1) = \frac{e^{-2}}{1 - e^{-2}} + \frac{e^{-3} \cdot (1 + e^{-3})}{1 - e^{-3}} = 0.2419 \approx 0.242 \]

6.7.7 Differenzengleichung und Übertragungsfunktion

a) Zur Berechnung der Übertragungsfunktion \(G(z) \) wird die Folge so umgestellt, dass alle \(y \) auf der einen und alle \(x \) auf der anderen Seite stehen.

\[12 \cdot y[k] - 7 \cdot y[k-1] + y[k-2] = 2 \cdot u[k-1] - u[k-2] + 3 \cdot u[k-3] \]

Dann wird die Folge mit der Verschiebungsregel in den z-Bereich transformiert.

\[Y(z) \cdot (12 - 7 \cdot z^{-1} + z^{-2}) = U(z) \cdot (2 \cdot z^{-1} - z^{-2} + 3 \cdot z^{-3}) \]
Die Übertragungsfunktion ergibt sich dann aus
\[
G(z) = \frac{Y(z)}{U(z)} = \frac{2 \cdot z^{-1} - z^{-2} + 3 \cdot z^{-3}}{12 - 7 \cdot z^{-1} + z^{-2}} = \frac{2 \cdot z^{2} - z + 3}{12 \cdot z^{3} - 7 \cdot z^{2} + z} = \frac{2 \cdot z^{2} - z + 3}{z \cdot (12 \cdot z^{2} - 7 \cdot z + 1)} = \frac{1}{12} \cdot \frac{2 \cdot z^{2} - z + 3}{z \cdot (\frac{7}{12} \cdot z + \frac{1}{12})}
\]

b) Um die Impulsantwort \(g[k]\) zu berechnen, werden die Pole der Übertragungsfunktion benötigt, um die Partialbruchzerlegung durchzuführen. Die Pole sind \(\alpha_1 = 0\), \(\alpha_2 = 1/3\) und \(\alpha_3 = 1/4\). Damit lautet die Partialbruchzerlegung
\[
G(z) = \frac{2 \cdot z^{2} - z + 3}{z \cdot (\frac{7}{12} \cdot z + \frac{1}{12})} = \frac{1}{12} \left(\frac{A}{z - \frac{1}{3}} + \frac{B}{z - \frac{1}{4}} + \frac{C}{z - 1} \right)
\]

Au einem Koeffizientenvergleich ergeben sich die Koeffizienten \(A = 36\), \(B = 104\) und \(C = -138\). Damit lautet die Darstellung in Partialbrüchen
\[
G(z) = \frac{36}{z - \frac{1}{3}} + \frac{104}{z - \frac{1}{4}} - \frac{138}{z - 1} = \frac{3 \cdot z^{-1}}{z - \frac{1}{3}} + \frac{26 \cdot z^{-1}}{z - \frac{1}{4}} - \frac{23 \cdot z^{-1}}{z - 1}
\]

Rücktransformation führt zu der Impulsantwort \(g[k]\)
\[
g[k] = 3 \cdot \delta[k - 1] + \frac{26}{3} \cdot \left(\frac{1}{3}\right)^{k-1} \cdot \sigma[k - 1] - \frac{23}{2} \cdot \left(\frac{1}{4}\right)^{k-1} \cdot \sigma[k - 1]
\]

c) Das Vorgehen ist prinzipiell dasselbe wie bei der Impulsantwort. Zur Berechnung der \(z\)-Transformierte der Sprungantwort wird die Übertragungsfunktion \(G(z)\) mit \(z/(z-1)\) erweitert.
\[
H(z) = G(z) \cdot \frac{z}{z - 1}
\]

\[
H(z) = \frac{1}{12} \left(\frac{101}{z - 1} + \frac{57}{z - \frac{1}{3}} + \frac{46}{z - \frac{1}{4}} \right) = \frac{101}{12} \cdot \frac{z^{-1}}{z - 1} + \frac{19}{4} \cdot \frac{z^{-1}}{z - \frac{1}{3}} + \frac{26}{3} \cdot \frac{z^{-1}}{z - \frac{1}{4}}
\]

Koeffizientenvergleich ergibt die Koeffizienten \(A = -101\), \(B = 57\) und \(C = 46\), sodass sich die Partialbruchdarstellung der Sprungantwort ergibt zu
\[
H(z) = \frac{1}{12} \left(\frac{-101}{z - 1} + \frac{57}{z - \frac{1}{3}} + \frac{46}{z - \frac{1}{4}} \right) = \frac{-101}{12} \cdot \frac{z^{-1}}{z - 1} + \frac{19}{4} \cdot \frac{z^{-1}}{z - \frac{1}{3}} + \frac{26}{3} \cdot \frac{z^{-1}}{z - \frac{1}{4}}
\]

Rücktransformation mit den Korrespondenzen der \(z\)-Transformation führt zu der Sprungantwort
\[
h[k] = -\frac{101}{12} \cdot \sigma[k - 1] + \frac{19}{4} \cdot \left(\frac{1}{3}\right)^{k-1} \cdot \sigma[k - 1] + \frac{26}{3} \cdot \left(\frac{1}{4}\right)^{k-1} \cdot \sigma[k - 1]
\]

Impuls- und Sprungantwort sind dem folgenden Diagramm dargestellt.
6.7.8 Interpretation der Übertragungsfunktion eines Systems

a) Die Übertragungsfunktion wird über Transformation der Differenzengleichung
\[y[k] + y[k-1] + 0.5 \cdot y[k-2] = u[k-1] \]
in den \(z \)-Bereich bestimmt.
\[Y(z) \left(1 + z^{-1} + \frac{1}{2} \cdot z^{-2}\right) = U(z) \cdot z^{-1} \]
Auflösen nach \(G(z) \) ergibt
\[G(z) = \frac{Y(z)}{U(z)} = \frac{z^{-1}}{1 + z^{-1} + \frac{1}{2} \cdot z^{-2}} = \frac{z}{z^2 + z + \frac{1}{2}} \]

b) Die Pole der Übertragungsfunktion werden über die Lösung der charakteristischen Gleichung
\[z^2 + z + \frac{1}{2} = 0 \]
bestimmt zu
\[z_{12} = -\frac{1}{2} \pm \frac{1}{2} \cdot j \]
Das konjugiert komplexe Polpaar liegt im Einheitskreis der \(z \)-Ebene, damit ist das System stabil. Das folgende Bild zeigt das Pol-Nullstellendiagramm zur Verdeutlichung der Pollage.

c) Die Impulsantwort \(g[k] \) ergibt sich aus Partialbruchzerlegung und der inversen \(z \)-Transformation. Die Übertragungsfunktion wird in Partialbrüche zerlegt.
\[G(z) = \frac{z}{z^2 + z + \frac{1}{2}} = \frac{A}{z^2 + 1 + \frac{1}{2} \cdot j} + \frac{B}{z + 1} \cdot \frac{1}{2} + \frac{1}{2} \cdot j \]

Die Koeffizienten ergeben sich über die Bestimmungsgleichung zu

\[A = \frac{1}{2} - \frac{1}{2} \cdot j \quad B = A' = \frac{1}{2} + \frac{1}{2} \cdot j \]

Damit kann die Übertragungsfunktion durch die Summe der Partialbrüche dargestellt werden.

\[G(z) = \frac{1}{2} \cdot \frac{1 - j}{z + \frac{1}{2}} + \frac{1 + j}{z - \frac{1}{2} \cdot j} \]

Rücktransformation führt zu der Impulsantwort \(g[k] \).

\[g[k] = \left(-\frac{1}{2} \cdot \frac{1}{2} \cdot j \right)^{k-1} \cdot \sigma[k-1] \cdot \left(\frac{1}{2} \cdot \frac{1}{2} \cdot j \right)^{k-1} \cdot \sigma[k-1] \left(\frac{1}{2} + \frac{1}{2} \cdot j \right) \]

Die Gleichung kann umgeformt werden zu

\[g[k] = \left(-\frac{\sqrt{2}}{2} \cdot e^\frac{i\pi}{4} \right)^{k-1} \cdot \sigma[k-1] \cdot \frac{\sqrt{2}}{2} \cdot e^{-\frac{i\pi}{4}} + \left(-\frac{\sqrt{2}}{2} \cdot e^\frac{i\pi}{4} \right)^{k-1} \cdot \sigma[k-1] \cdot \frac{\sqrt{2}}{2} \cdot e^{\frac{i\pi}{4}} \]

\[= -\left(\frac{\sqrt{2}}{2} \right)^k \cdot \left(\left(e^{\frac{i\pi}{4} + \frac{i\pi}{4}} \right) + \left(e^{-\frac{i\pi}{4} + \frac{i\pi}{4}} \right) \right) \cdot \sigma[k-1] \]

\[= -\left(\frac{\sqrt{2}}{2} \right)^k \cdot 2 \cdot \cos\left(\frac{2\pi}{4} \cdot k \right) \cdot \sigma[k-1] = -\left(\frac{\sqrt{2}}{2} \right)^k \cdot 2 \cdot \sin\left(\frac{\pi}{4} \cdot k \right) \cdot \sigma[k-1] \]

d) Die Sprungantwort \(h[k] \) ergibt sich aus der Erweiterung der Übertragungsfunktion um \(z/(z-1) \), Partialbruchzerlegung und der inversen z-Transformation.

\[H(z) = \frac{G(z) \cdot z}{z-1} = \frac{z^2}{z^2 + z + \frac{1}{2}} \cdot \frac{z}{z - 1} = \frac{z^2}{z^2 + 1 + \frac{1}{2} \cdot j} \cdot \frac{z}{z + 1} \cdot \frac{1}{2} + \frac{1}{2} \cdot j \]

Bestimmung der Koeffizienten über die Bestimmungsgleichung führt zu

\[A = 1 \quad B = -1 \quad C = B^* = j \]

Damit kann die z-Transformierte der Sprungantwort dargestellt werden als

\[H(z) = -\frac{j}{z + 1} + \frac{j}{z + 1 - 1 \cdot 1} + 1 \]

Rücktransformation mit den Korrespondenzen der z-Transformation führt zu der Sprungantwort \(h[k] \).

\[h[k] = \left(-\frac{1}{2} \cdot \frac{1}{2} \cdot j \right)^{k-1} \cdot \sigma[k-1] \cdot (-j) + \left(-\frac{1}{2} + \frac{1}{2} \cdot j \right)^{k-1} \cdot \sigma[k-1] \cdot j + \sigma[k-1] \]

Auch sie kann umgeformt werden zu
6.7 Musterlösung – Zeitdiskrete Systeme im z-Bereich

\[h[k] = -j \cdot \left(-\frac{\sqrt{2}}{2} e^{j\frac{k}{4}} \right)^{k-1} \cdot \sigma[k-1] + j \cdot \left(-\frac{\sqrt{2}}{2} e^{-j\frac{k}{4}} \right)^{k-1} \cdot \sigma[k-1] + \sigma[k-1] \]

\[= -j \cdot \left(-\frac{\sqrt{2}}{2} \right)^{k-1} \cdot \left(e^{j\frac{k}{4}} \right)^{k-1} + \left(-e^{-j\frac{k}{4}} \right)^{k-1} \cdot \sigma[k-1] + \sigma[k-1] \]

\[= -j \cdot \left(-\frac{\sqrt{2}}{2} \right)^{k-1} \cdot e^{j\frac{k(k-1)}{4}} - e^{-j\frac{k(k-1)}{4}} \cdot \sigma[k-1] + \sigma[k-1] \]

\[= j \cdot 2 \cdot j \cdot \left(-\frac{\sqrt{2}}{2} \right)^{k-1} \cdot \sin\left(\frac{\pi}{4} \cdot (k-1) \right) \cdot \sigma[k-1] + \sigma[k-1] \]

\[= -2 \cdot \left(-\frac{\sqrt{2}}{2} \right)^{k-1} \cdot \sin\left(\frac{\pi}{4} \cdot (k-1) \right) \cdot \sigma[k-1] + \sigma[k-1] \]

Impuls- und Sprungantwort sind in folgendem Diagramm dargestellt.

6.7.9 Systementwurf durch Diskretisierung der Impulsantwort

a) Die Abtastwerte \(T_A = 3 \) der Impulsantwort sind in folgender Tabelle zusammengefasst und unten zusammen mit der Sprungantwort dargestellt.

<table>
<thead>
<tr>
<th>(k)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>(g[k])</td>
<td>0</td>
<td>0.6694</td>
<td>0.2987</td>
<td>0.1</td>
<td>0.0297</td>
<td>0.0083</td>
</tr>
</tbody>
</table>

b) Die angegebenen Folge \(g[k] \) ist eine endliche Folge und kann deshalb über einzelne Impulse dargestellt werden.

\[g[k] = 0 \cdot \delta[k] + 0.6694 \cdot \delta[k-1] + 0.2987 \cdot \delta[k-2] + 0.1 \cdot \delta[k-3] + 0.0297 \cdot \delta[k-4] + 0.0083 \cdot \delta[k-5] \]

Die entsprechende \(z \)-Transformierte ergibt sich mit der Verschiebungsregel zu

\[G(z) = 0 + 0.6694 \cdot z^{-1} + 0.2987 \cdot z^{-2} + 0.1000 \cdot z^{-3} + 0.0297 \cdot z^{-4} + 0.0083 \cdot z^{-5} \]

\[= \frac{0.6694 \cdot z^4 + 0.2987 \cdot z^3 + 0.1000 \cdot z^2 + 0.0297 \cdot z + 0.0083}{z^5} \]

c) Der aktuelle Ausgangswert \(y[k] \) wird über die \(z \)-Transformierte berechnet:
Y(z) = G(z) \cdot X(z) = (0.6694 \cdot z^{-1} + 0.2987 \cdot z^{-2} + 0.1000 \cdot z^{-3} + 0.0297 \cdot z^{-4} + 0.0083 \cdot z^{-5}) \cdot X(z)

= 0.6694 \cdot z^{-1} \cdot X(z) + 0.2987 \cdot z^{-2} \cdot X(z) + 0.1000 \cdot z^{-3} \cdot X(z) + 0.0297 \cdot z^{-4} \cdot X(z) + 0.0083 \cdot z^{-5} \cdot X(z)

Daraus ergibt sich durch Rücktransformation die Bestimmungsgleichung für y[k].

\[y[k] = 0.6694 \cdot x[k-1] + 0.2987 \cdot x[k-2] + 0.1 \cdot x[k-3] + 0.0297 \cdot x[k-4] + 0.0083 \cdot x[k-5] \]

d) Die Sprungantwort-Folge h[k] ergibt sich aus der Summation der Impulsantwort multipliziert mit dem Abstand der Abtastwerte T_A.

\[h[k] = T_A \cdot \sum_{k=0}^{\infty} g[k] \]

e) Die Abtastwerte der Sprungantwort ergeben sich zu

<table>
<thead>
<tr>
<th>k</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>g[k]</td>
<td>0</td>
<td>2.0082</td>
<td>2.9043</td>
<td>3.2043</td>
<td>3.2935</td>
<td>3.3184</td>
</tr>
</tbody>
</table>

Beispielsweise berechnet sich h[1] zu

\[h[1] = T_A \cdot g[1] = 3 \cdot 0.6694 = 2.0082 \]

Impulsantwort und Sprungantwort sind in dem folgenden Bild dargestellt.

\[\lim_{k \to \infty} h[k] = 3 \cdot (0.6694 + 0.2987 + 0.1 + 0.0297 + 0.0083) = 3.3184 \]

Der stationäre Endwert der Sprungantwort des analogen Systems errechnet sich aus der Laplace-Transformierten von g(t). Daraus ergibt sich

\[G(s) = \frac{1}{s + \frac{1}{2}} \]

Nach dem Grenzwertsatz der Laplace-Transformation ergibt sich

\[\lim_{t \to \infty} h(t) = G(0) = 4 \]

Die Unterschiede zwischen der Sprungantwort h(t) und Sprungantwort-Folge h[k] ergeben sich, weil das Signal mit einer zu geringen Frequenz abgetastet wird. Die Exponentialfunktion h(t) hat eine Zeitkonstante T = 2 und weist deshalb eine 3-dB-Grenzfrequenz \(\omega_G = 0.5 \) auf. Die Abtastfrequenz beträgt...
\[\omega_A = \frac{2 \cdot \pi}{T_A} = \frac{2 \cdot \pi}{3} \approx 2.1 \]

Das Abtasttheorem ist demnach eingehalten. Bei der halben Abtastfrequenz \(\omega_A = 1.05 \) ist aber der Amplitudengang des analogen Systems nicht null. Der durch die Abtastung periodisch wiederholte Amplitudengang überlagert sich mit dem Basisband.

Wird die Abtastzeit auf \(T_A = 1 \) reduziert, ergibt sich eine Abtastfrequenz

\[\omega_A = \frac{2 \cdot \pi}{T_A} = \frac{2 \cdot \pi}{1} \approx 6.3 \]

Sie ist ca. 10-mal so hoch wie die nach dem Abtasttheorem erforderliche Abtastfrequenz. Das folgende Bild zeigt, das mit einer Abtastzeit von \(T_A = 1 \) der stationäre Endwert in guter Näherung erreicht wird.
7 Spektrum von Signalfolgen

7.1 Grundlagen der Fourier-Transformation für Signalfolgen

7.1.1 Eigenfunktionen zeitdiskreter LTI-Systeme

Lineare Differenzengleichungen mit konstanten Koeffizienten beschreiben zeitdiskrete LTI-Systeme. Die Lösungen dieser Differenzengleichungen setzen sich aus Exponentialfolgen zusammen. Eine besondere Stellung nehmen komplexe Exponentialfolgen der Form

\[x[k] = e^{j\Omega_0 k} \] (7.1)

ein. Sie werden als Eigenfolgen des Systems bezeichnet. Bei einer Anregung mit diesen Folgen reagiert das System mit einer Folge gleicher normierter Frequenz \(\Omega_0 \) im Allgemeinen aber unterschiedlicher Amplitude und Phase.

Beispiel: Anregung eines Systems 1. Ordnung mit einer komplexen Exponentialfolge

Ein System mit der Übertragungsfunktion

\[G(z) = \frac{z}{z - \lambda} \] (7.2)

wird mit einem Signal

\[x[k] = e^{j\Omega_0 k} \cdot \sigma[k] \] (7.3)

angeregt. Das Eingangssignal hat die z-Transformierte

\[X(z) = \frac{z}{z - e^{j\Omega_0}} \] (7.4)

Die z-Transformierte des Ausgangssignals lautet nach den Darstellungen zur z-Transformation
Über Partialbruchzerlegung und Rücktransformation ergibt sich die Ausgangsfolge \(y[k] \) mit

\[
y[k] = \frac{\lambda^{k+1} \cdot \sigma[k]}{\lambda - e^{j\Omega_0}} + \frac{e^{j\Omega_0} \cdot e^{j(k+1)k} \cdot \sigma[k]}{\lambda - e^{j\Omega_0}} = \frac{\lambda^{k+1} \cdot \sigma[k]}{\lambda - e^{j\Omega_0}} + G(z) \bigg|_{z = e^{j\Omega_0}} \cdot e^{j(k+1)k} \cdot \sigma[k]
\]

\[
= \frac{\lambda^{k+1} \cdot \sigma[k]}{\lambda - e^{j\Omega_0}} + A(\Omega_0) \cdot e^{j\Omega_0 k} \cdot e^{j(k+1)k} \cdot \sigma[k]
\]

Das System reagiert auf die harmonischen Anregung mit der Kreisfrequenz \(\Omega_0 \) abgesehen von Einschwingvorgängen mit einem harmonischen Signal derselben Kreisfrequenz. Für den Fall einer harmonischen Anregung müssen demnach nur das Verhältnis der Ein- und Ausgangsamplitude sowie die Phasenverschiebung bestimmt werden. Beide Größen sind von der normierten Kreisfrequenz \(\Omega_0 \) abhängig. Wie bei zeitkontinuierlichen Signalen wird das Verhältnis der Amplituden als Amplitudengang \(A(\Omega) \) und die Phasenverschiebung als Phasengang \(\phi(\Omega) \) bezeichnet.

Das Ausgangssignal ergibt sich aus dem Produkt des Eingangssignals mit einem komplexen Faktor, der zu einer Änderung der Amplitude und der Phase führt. Die Amplitude ergibt sich aus dem Betrag der Übertragungsfunktion \(G(z) \) an der Stelle \(z = e^{j\Omega_0} \). Die Phase ergibt sich aus der Phase der Übertragungsfunktion \(G(z) \) an der Stelle \(z = e^{j\Omega_0} \). Die Systemreaktion kann damit bei Anregung eines Systems mit einer komplexen Exponentialfunktion vergleichsweise einfach bestimmt werden.

7.1.2 Definitionsgleichung der Fourier-Transformation von Signalfolgen

Das Spektrum eines zeitkontinuierlichen Signals wird nach den Ausführungen in Teil A des Skriptes berechnet über das Integral

\[
X(\omega) = \int_{-\infty}^{\infty} x(t) \cdot e^{-j\omega t} \, dt
\]

Ein abgetastetes Signal \(x_A(t) \)

\[
x_A(t) = \sum_{k=-\infty}^{\infty} x(t) \cdot \delta(t - k \cdot T_A) = \sum_{k=-\infty}^{\infty} x[k] \cdot \delta(t - k \cdot T_A)
\]

ist zu jedem Zeitpunkt definiert. Sein Spektrum berechnet sich mit Gleichung (7.7) zu
7.1 Grundlagen der Fourier-Transformation für Signalfolgen

\[X_A(\omega) = \frac{1}{T_A} \int x_A(t) \cdot e^{-i \omega t} \, dt = \frac{1}{T_A} \left(\sum_{k=-\infty}^{\infty} x(t) \cdot \delta(t - k \cdot T_A) \right) \cdot e^{-i \omega t} \, dt \]
(7.9)

Die Reihenfolge von Summation und Integration kann vertauscht werden. Mit der Ausblendeigenschaft der Impulsfunktion kann der Ausdruck umgeformt werden zu

\[X_A(\omega) = \sum_{k=-\infty}^{\infty} x[k] \cdot e^{-i \omega k T_A} \cdot \int \delta(t - k \cdot T_A) \, dt = \sum_{k=-\infty}^{\infty} x[k] \cdot e^{-i \omega k T_A} \]
(7.10)

Gleichung (7.10) weist der Folge von Abtastwerten \(x[k] \) ein Spektrum \(X_A(\omega) \) zu. Dabei tritt die Frequenz \(\omega \) immer in Kombination mit der Abtastzeit \(T_A \) auf. Deshalb wird bei Signalfolgen das Spektrum als Funktion der normierten Kreisfrequenz

\[\Omega = \omega \cdot \frac{T_A}{T} \]
(7.11)

dargestellt. Wegen der Periodizität der Exponentialfunktion mit imaginärem Argument ist jeder Summand der Summe in Gleichung (7.10) periodisch in \(2\pi \). Deshalb ist auch das Spektrum der Folge \(x[k] \) periodisch in \(2\pi \). Es ist damit ausreichend, das Spektrum in den Grenzen von \(-\pi \ldots +\pi \) darzustellen. Durch die Normierung über die Abtastzeit \(T_A \)

\[\omega = \Omega \cdot \frac{T_A}{T} \]
(7.12)

ergibt sich die in Tabelle 7.1 gezeigte Zuordnung zwischen der normierten Frequenz \(\Omega \) und der Kreisfrequenz \(\omega \).

Tabelle 7.1: Zuordnung zwischen der normierten Frequenz \(\Omega \) und der Kreisfrequenz \(\omega \) bei der Fourier-Transformation für Folgen

<table>
<thead>
<tr>
<th>Normierte Kreisfrequenz (\Omega)</th>
<th>Kreisfrequenz (\omega)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-\pi)</td>
<td>(-\Omega T_A/2)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(\pi)</td>
<td>(\Omega T_A/2)</td>
</tr>
</tbody>
</table>

Damit ergibt sich die Definitionsgleichung der Fourier-Transformation von Signalfolgen zu

\[X(\Omega) = \sum_{k=-\infty}^{\infty} x[k] \cdot e^{-i \Omega k} \]
(7.13)
Die Fourier-Transformation für Signalfolgen transformiert beliebige Signalfolgen $x[k]$ in eine kontinuierliche, komplexe Funktion der reellen Variable Ω. Wie bei zeitkontinuierlichen Signalen wird die Funktion $X(\Omega)$ als Spektrum der Signalfolge $x[k]$ bezeichnet. Auch die Schreibweise

$$\mathcal{F}\{x[k]\} = X(\Omega)$$

sowie das Hantel-Symbol

$$x[k] \leftrightarrow X(\Omega)$$

$$X(\Omega) = X_R(\Omega) + j \cdot X_I(\Omega) = \left| X(\Omega) \right| e^{j\varphi(\Omega)}$$

Bei der Darstellung in kartesischen Koordinaten wird die Fourier-Transformierte in Realteil $X_R(\Omega)$ und Imaginärteil $X_I(\Omega)$ zerlegt. Bei der Darstellung in Polarkoordinaten wird die komplexe Fourier-Transformierte mit Betrag $|X(\Omega)|$ und Phase $\varphi(\Omega)$ dargestellt.

7.1.3 Fourier-Transformation von grundlegenden Signalfolgen

Impulsfolge

Aus der Definition der diskreten Impulsfolge

$$x[k] = \delta[k] = \begin{cases} 1 & \text{für } k = 0 \\ 0 & \text{für ganzzahlige } k \neq 0 \end{cases}$$

ergibt sich das Spektrum durch Einsetzen in die Definitionsgleichung zu

$$X(\Omega) = \sum_{k=-\infty}^{\infty} \delta[k] \cdot e^{-j\Omega k} = e^{-j\Omega} \cdot \sum_{k=-\infty}^{\infty} \delta[k] = 1$$

Bild 7.1 stellt die Impulsfolge und das Spektrums gegenüber. Wie bereits bei der zeitkontinuierlichen Fourier-Transformation werden zur Darstellung eines Impulses die Frequenzen im gesamten Spektralbereich benötigt.
7.1 Grundlagen der Fourier-Transformation für Signalfolgen

Wird der Impuls um \(k_0 \) verschoben, ändert sich die Fourier-Transformierte zu

\[
X(\Omega) = \sum_{k=-\infty}^{\infty} \delta[k - k_0] \cdot e^{j\Omega k} = e^{-j\Omega k_0} \cdot \sum_{k=-\infty}^{\infty} \delta[k - k_0] = e^{-j\Omega k_0}
\]

(7.19)

Eine Verschiebung des Impulses um \(k_0 > 0 \) nach rechts führt zu einer Multiplikation der Fourier-Transformierten mit \(z = e^{-j\Omega k_0} \). Diese Multiplikation ändert die Phase des Spektrums, sein Betrag bleibt dagegen konstant.

Kausale Rechteckfolge

Für die Rechteckfolge mit der Definition

\[
x[k] = \sigma[k] - \sigma[k-K]
\]

(7.20)

wird die Summe in der Definitionsgleichung der Fourier-Transformation von Signalfolgen endlich. Mit der endlichen geometrischen Reihe

\[
\sum_{k=0}^{K-1} q^k = \frac{1 - q^K}{1-q}
\]

(7.21)

ergibt sich die Fourier-Transformierte

\[
X(\Omega) = \sum_{k=0}^{K-1} (\sigma[k] - \sigma[k-K]) \cdot e^{-j\Omega k} = \sum_{k=0}^{K-1} e^{-j\Omega k} = \frac{1 - e^{-j\Omega K}}{1-e^{-j\Omega}}
\]

(7.22)

\[
X(\Omega) = \frac{1-e^{-j\Omega K}}{1-e^{-j\Omega}} \cdot \frac{\sin\left(\frac{K \cdot \Omega}{2}\right)}{\sin\left(\Omega \cdot \frac{2}{2}\right)} = e^{-j\Omega (K-1)} \cdot \frac{\sin\left(\frac{K \cdot \Omega}{2}\right)}{\sin\left(\Omega \cdot \frac{2}{2}\right)}
\]

(7.23)

Bild 7.2 stellt die Rechteckfolge für \(K_1 = 5 \) und \(K_2 = 10 \) und den zugehörigen Betrag des Spektrums gegenüber.
Die erste Nullstelle Ω_0 des Spektrums liegt an der Stelle

$$\Omega_0 = \frac{2 \cdot \pi}{K} \quad (7.24)$$

Wird diese Nullstelle als Maß für die Breite des Spektrums angesehen, wird klar, dass das Spektrum mit sinkender Zahl K von Abtastwerten breiter wird. Im Extremfall liegt mit $x[k] = \delta[k]$ ein einziger Abtastwert vor, und das Spektrum wird mit $X(\Omega) = 1$ beliebig breit.

Kausale Exponentialfolge

Die kausale Potenzfolge ist definiert als

$$x[k] = \lambda^k \cdot \sigma[k] \quad (7.25)$$

Ihre Fourier-Transformierte ergibt sich aus der Definitionsgleichung zu

$$X(\Omega) = \sum_{k=0}^{\infty} \lambda^k \cdot \sigma[k] \cdot e^{-j k \Omega} = \sum_{k=0}^{\infty} (\lambda \cdot e^{-j \Omega})^k \quad (7.26)$$

Mit der Summationsformel für die geometrische Reihe

$$\sum_{k=0}^{\infty} q^k = \frac{1}{1-q} \quad \text{für} \ |q| < 1 \quad (7.27)$$

ergibt sich für $|\lambda| < 1$ die Fourier-Transformierte
Die Fourier-Transformierte der kausalen Exponentialfolge kann auf diese Art nur für $|\lambda| < 1$ berechnet werden. Bild 7.3 stellt die kausale Exponentialfolgen mit $\lambda = 0.9$ und $\lambda = -0.9$ sowie den Betrag ihrer Spektren dar.

Sowohl für $\lambda = 0.9$, als auch für $\lambda = -0.9$ klingen die Signalfolgen $x[k]$ ab. Wegen des negativen Vorzeichens handelt es sich bei $\lambda = -0.9$ um eine alternierende Folge. Durch den schnellen Signalwechsel bei der alternierenden Signalfolge besitzt das Spektrum der Exponentialfolge mit $\lambda = -0.9$ hohe Signalanteile bei den normierten Frequenzen $\Omega = \pm \pi$, die der Abtastfrequenz $\pm \omega_A/2$ entsprechen. Im Gegensatz dazu weist das Spektrum der Exponentialfolge mit $\lambda = 0.9$ wesentliche Spektralannteile an der Stelle $\Omega = 0$ auf.

Bild 7.3: Kausale Exponentialfolge und Betrag ihres Spektrums für $\lambda = 0.9$ und $\lambda = -0.9$

7.1.4 Existenz der Fourier-Transformation von Signalfolgen

Bei der Berechnung der Fourier-Transformierten der kausalen Exponentialfolge ergibt sich die Bedingung $|\lambda| < 1$ für die Konvergenz der zu berechnenden Reihe. Daraus resultiert die Frage, unter welchen Bedingungen die Fourier-Transformation von Signalfolgen konvergiert. Bei der Berechnung über die Definitionsgleichung wird die Reihe

$$X(\Omega) = \sum_{k=-\infty}^{\infty} x[k] \cdot e^{-j\Omega k}$$

Zwei Spezialfälle werden diskutiert, kausale Signalfolgen und zeitlich begrenzte Signalfolgen.

Kausale Signalfolgen

Bei kausalen Signalfolgen kann die Konvergenzbedingung aus der geometrischen Reihe abgeleitet werden. Dabei wird ihre Konvergenz auf eine Betrachtung des Betrages von \(q \) reduziert. Um diesen Ansatz anwenden zu können, ist es wie bei der \(z \)-Transformation erforderlich, den Betrag der Folge \(x[k] \) mithilfe einer Exponentialfolge nach oben abzuschätzen.

\[
|x[k]| \leq X_{\text{MAX}} \cdot r^k
\]

(7.31)

Mit der Abschätzung der Folge \(x[k] \) gilt für \(X(\Omega) \):

\[
|X(\Omega)| = \left| \sum_{k=0}^{\infty} x[k] \cdot e^{-j\Omega k} \right| \leq \sum_{k=0}^{\infty} |x[k]| \cdot |e^{-j\Omega k}| \leq \sum_{k=0}^{\infty} X_{\text{MAX}} \cdot r^k = X_{\text{MAX}} \cdot \sum_{k=0}^{\infty} r^k
\]

(7.32)

Damit existiert die Fourier-Transformierte, wenn für den Betrag von \(r \) gilt:

\[
|r| < 1
\]

(7.33)

Also kann die Fourier-Transformierte für alle kausalen Signale, deren \(z \)-Transformierte \(X(z) \) ausschließlich Pole innerhalb des Einheitskreises besitzt, über die Definitionsgleichung berechnet werden.

Zeitlich begrenzte Signalfolgen

\[
|X(\Omega)| = \left| \sum_{k=-\infty}^{\infty} x[k] \cdot e^{-j\Omega k} \right| \leq \sum_{k=-\infty}^{\infty} |x[k]|
\]

(7.34)

Da die Anzahl von Abtastwerten und ihre Amplitude begrenzt sind, ist die Summe endlich.

Bei der Berechnung der Fourier-Transformierten von Leistungssignalen in Abschnitt 7.1.6 zeigt sich, dass die Bedingung der absoluten Summierbarkeit eine hinreichende, aber keine notwendige Bedingung ist.

7.1.5 Inverse Fourier-Transformation diskreter Folgen

Das Spektrum einer Signalfolge \(X(\Omega) \) ist eine in \(2\pi \) periodische Funktion. Ähnlich wie bei periodischen Zeitsignalen kann diese Funktion mithilfe einer Reihe dargestellt werden. Es ergibt sich die Formel der Abtastwerte

\[
x[k] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\Omega) \cdot e^{j\Omega k} \, d\Omega
\]

(7.35)
Als Beweis wird gezeigt, dass die Fourier-Transformation von Folgen und ihre Rücktransformation invers zueinander sind. Dazu wird die Gleichung für die Fourier-Transformation von Folgen in die Gleichung zur Rücktransformation eingesetzt. Als Ergebnis muss sich die Folge $x[k]$ ergeben.

$$x[k] = \frac{1}{2\cdot\pi} \int_{-\pi}^{\pi} X(\omega) \cdot e^{j\omega k} \, d\omega = \frac{1}{2\cdot\pi} \int_{-\pi}^{\pi} \left(\sum_{k=-\infty}^{\infty} x[k] \cdot e^{-j\omega k} \right) \cdot e^{j\omega k} \, d\omega \quad (7.36)$$

Zum Beweis wird die Reihenfolge von Summation und Integration vertauscht, und die beiden Exponentialfunktionen werden zusammengefasst.

$$x[k] = \frac{1}{2\cdot\pi} \int_{-\pi}^{\pi} \sum_{k=-\infty}^{\infty} x[k] \cdot e^{j\omega k} \cdot e^{j\omega k} \, d\omega = \sum_{k=-\infty}^{\infty} x[k] \cdot \frac{1}{2\cdot\pi} \int_{-\pi}^{\pi} e^{-j\omega k} \cdot e^{j\omega k} \, d\omega$$

$$= \sum_{k=-\infty}^{\infty} x[k] \cdot \frac{1}{2\cdot\pi} \int_{-\pi}^{\pi} e^{j\omega(k-k)} \, d\omega \quad (7.37)$$

Das Integral der komplexen Exponentialfunktion über eine volle Periode ist null. Nur für $k = \kappa$ wird aus der komplexen Exponentialfunktion die Zahl eins. Das Ergebnis kann mit der Impulsfolge dargestellt werden. Mit der Ausblendeigenschaft der Impulsfolge ergibt sich

$$\sum_{k=-\infty}^{\infty} x[k] \cdot \frac{1}{2\cdot\pi} \int_{-\pi}^{\pi} e^{j\omega(k-k)} \, d\omega = \sum_{k=-\infty}^{\infty} x[k] \cdot \delta[k-k] = x[k] \quad (7.38)$$

Der Umgang mit der Rücktransformation wird an einem Beispiel vertieft.

Beispiel: Inverse Fourier-Transformation diskreter Folgen

Zu einem rechteckförmigen Spektrum der Form

$$X(\Omega) = \sigma \left(\Omega + \frac{\pi}{2} \right) - \sigma \left(\Omega - \frac{\pi}{2} \right) \quad (7.39)$$

soll die zugehörige Signalfolge $x[k]$ berechnet werden. Dazu wird die Gleichung zur Rücktransformation verwendet. Für $k \neq 0$ ergibt sich

$$x[k] = \frac{1}{2\cdot\pi} \int_{-\pi}^{\pi} X(\omega) \cdot e^{j\omega k} \, d\omega = \frac{1}{2\cdot\pi} \int_{-\pi/2}^{\pi/2} e^{j\omega k} \, d\omega = \frac{1}{2\cdot\pi} \left. \frac{1}{j\cdot k} e^{j\omega k} \right|_{-\pi/2}^{\pi/2} \quad (7.40)$$

Für $k = 0$ errechnet sich der Wert $x[0]$ zu

$$x[0] = \frac{1}{2\cdot\pi} \int_{-\pi}^{\pi} X(\omega) \cdot e^{j\omega 0} \, d\omega = \frac{1}{2\cdot\pi} \int_{-\pi/2}^{\pi/2} 1 \, d\omega = \frac{\pi}{2\cdot\pi} = \frac{1}{2} \quad (7.41)$$

Wie bei zeitkontinuierlichen Signalen kann aus dem Spektrum $X(\Omega)$ eine eindeutige Signalfolge $x[k]$ berechnet werden. Bild 7.4 stellt die Signalfolge und ihre Fourier-Transformierte gegenüber.
7.1.6 Fourier-Transformierte von Leistungssignalen

In Abschnitt 7.1.4 wird eine hinreichende Bedingung für die Existenz der Fourier-Transformierten einer Signalfolge hergeleitet und diskutiert. Es zeigt sich, dass die absolute Summierbarkeit eine hinreichende Bedingung ist. Aus diesem Grund existiert für Energiesignalen immer eine Fourier-Transformierte. Aber auch für Leistungssignalen lässt sich eine Fourier-Transformierte bestimmen. Ähnlich wie im zeitkontinuierlichen Bereich wird dazu die Impulsfunktion im Frequenzbereich verwendet. Da bei zeitdiskreten Signalen das Spektrum periodisch in 2π ist, wird die Signalfolge $x[k]$ zu dem Spektrum

$$X(\Omega) = \sum_{\nu=-\infty}^{\infty} \delta(\Omega - 2\pi \cdot \nu)$$ \hspace{1cm} (7.42)

berechnet. Mit der Definitionsungleichung der inversen Fourier-Transformation von Signalfolgen ergibt sich

$$x[k] = \frac{1}{2\pi} \cdot \int_{-\pi}^{\pi} \sum_{\nu=-\infty}^{\infty} \delta(\Omega - 2\pi \cdot \nu) \cdot e^{i\Omega k} \, d\Omega$$ \hspace{1cm} (7.43)

In dem Bereich von $-\pi \leq \Omega \leq \pi$ liegt nur der Impuls an der Stelle $\Omega = 0$. Damit ergibt sich mit der Ausblendeigenschaft der Impulsfunktion

$$x[k] = \frac{1}{2\pi} \cdot \int_{-\pi}^{\pi} \delta(\Omega) \cdot e^{i\Omega k} \, d\Omega = \frac{1}{2\pi}$$ \hspace{1cm} (7.44)

Diese Folge $x[k]$ ist nach den Ausführungen in Abschnitt 3.1.3 keine Energiesignalfolge, trotzdem besitzt sie eine Fourier-Transformierte. Bild 7.5 stellt die Einsfolge und ihre Fourier-Transformierte gegenüber.
7.1 Grundlagen der Fourier-Transformation für Signalfolgen

Bild 7.5: Einsfolge und ihr Spektrum

Mit den Rechenregeln zur Fourier-Transformation von Signalfolgen lassen sich mit dieser Korrespondenz weitere Korrespondenzen herleiten.

Beispiel: Korrespondenz der Kosinusfolge

Bei der zeitkontinuierlichen Fourier-Transformation kann das Spektrum einer harmonischen Funktion über die Rücktransformation bestimmt werden. In diesem Beispiel wird diese Idee für Folgen aufgegriffen. Es wird die zu dem Spektrum

\[
X(\Omega) = \sum_{\nu=-\infty}^{\infty} \delta(\Omega + \Omega_0 + 2 \cdot \pi \cdot \nu) + \delta(\Omega - \Omega_0 + 2 \cdot \pi \cdot \nu)
\]

gehörrige Signalfolge \(x[k]\) berechnet. Dabei liegt \(\Omega_0\) in dem Bereich \(0 < \Omega_0 < \pi\). Für die Berechnung der entsprechenden Signalfolge \(x[k]\) wird die Gleichung zur Rücktransformation verwendet und der Ausdruck in zwei separate Integrale aufgeteilt.

\[
x[k] = \frac{1}{2 \cdot \pi} \int_{-\pi}^{\pi} X(e^{j\Omega}) \cdot e^{j\Omega k} d\Omega = \frac{1}{2 \cdot \pi} \left[\int_{-\pi}^{\pi} \left(\delta(\Omega + \Omega_0) + \delta(\Omega - \Omega_0) \right) \cdot e^{j\Omega k} d\Omega \right]
\]

Jedes Integral kann mit der Ausblendeigenschaft der Impulsfunktion gelöst werden.

\[
x[k] = \frac{1}{2 \cdot \pi} \left(e^{j\Omega_0 k} \cdot \int_{-\pi}^{\pi} \delta(\Omega + \Omega_0) d\Omega + \frac{1}{2 \cdot \pi} \cdot e^{j\Omega_0 k} \cdot \int_{-\pi}^{\pi} \delta(\Omega - \Omega_0) d\Omega \right)
\]

Damit ergibt sich die Korrespondenz zur Kosinusfolge zu

\[
\mathcal{F}\{\cos(k \cdot \Omega_0)\} = \pi \cdot \sum_{\nu=-\infty}^{\infty} \delta(\Omega + \Omega_0 + 2 \cdot \pi \cdot \nu) + \delta(\Omega - \Omega_0 + 2 \cdot \pi \cdot \nu)
\]

Bild 7.6 stellt eine Kosinusfolge mit \(\Omega_0 = \pi/3\) und ihre Fourier-Transformierten dar.
Auf demselben Weg kann die Fourier-Transformierte der Sinusfolge hergeleitet werden.

7.1.7 Symmetrieigenschaften der Fourier-Transformation von Signalfolgen

Bei der Anwendung der Fourier-Transformation können Symmetriebedingungen genutzt werden, um aus existierenden Korrespondenzen weitere Korrespondenzen abzuleiten. Insbesondere bei reellen Zahlenfolgen können die Symmetriebedingungen für eine schnelle Plausibilisierung von Ergebnissen verwendet werden.

Im Folgenden werden die wesentlichen Symmetrieigenschaften für komplexe und reelle Signalfolgen zusammengefasst. Weitere Symmetrieregeln und ihre Herleitung sind in [Oppe04] zu finden. Dabei wird davon ausgegangen, dass zur Signalfolge \(x[k] \) das Spektrum \(X(\Omega) \) gehört.

Tabelle 7.2: Symmetrieregeln der Fourier-Transformation für komplexe Signalfolgen

<table>
<thead>
<tr>
<th>Folge (x[k])</th>
<th>Fourier-Transformierte (X(\Omega))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gerade Folge (x[k])</td>
<td>Reelles Spektrum (X(\Omega))</td>
</tr>
<tr>
<td>Ungerade Folge (x[k])</td>
<td>Imaginäres Spektrum (X(\Omega))</td>
</tr>
<tr>
<td>Konjugiert komplexe Folge (x^*[k])</td>
<td>(X^*(-\Omega))</td>
</tr>
<tr>
<td>Gespiegelte konjugiert komplexe Folge (x^*[-k])</td>
<td>(X^*(\Omega))</td>
</tr>
</tbody>
</table>
Tabelle 7.3: Symmetrieregeln der Fourier-Transformation für reelle Signalfolgen $x[k]$

<table>
<thead>
<tr>
<th>Regel</th>
<th>Anmerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>$X(\Omega) = X^*(-\Omega)$</td>
<td>Fourier-Transformierte einer reellen Folge ist konjugiert symmetrisch</td>
</tr>
<tr>
<td>$X_R(\Omega) = X_R(-\Omega)$</td>
<td>Realteil der Fourier-Transformierten ist gerade</td>
</tr>
<tr>
<td>$X_I(\Omega) = -X_I(-\Omega)$</td>
<td>Imaginärteil der Fourier-Transformierten ist ungerade</td>
</tr>
<tr>
<td>$</td>
<td>X(\Omega)</td>
</tr>
<tr>
<td>$\phi(\Omega) = -\phi(-\Omega)$</td>
<td>Phase der Fourier-Transformierten ist ungerade</td>
</tr>
</tbody>
</table>

Die hier dargestellten Symmetrieregeln für reelle Signalfolgen werden an einem Beispiel verdeutlicht.

Beispiel: Fourier-Transformierten der kausalen Exponentialfolge

Es wird die Fourier-Transformierte der kausalen Exponentialfolge

$$x[k] = \lambda^k \cdot \sigma[k]$$ \hspace{1cm} (7.49)

diskutiert. Das Spektrum der kausalen Exponentialfolge berechnet sich zu

$$X(\Omega) = \frac{1}{1-\lambda \cdot e^{-j\Omega}} = \frac{1}{1-\lambda \cdot \cos(\Omega) - j \cdot \lambda \cdot \sin(\Omega)}$$ \hspace{1cm} (7.50)

Die konjugiert symmetrische Fourier-Transformierte ergibt sich zu

$$X^*(-\Omega) = \frac{1}{1-\lambda \cdot \cos(-\Omega) + j \cdot \lambda \cdot \sin(-\Omega)} = \frac{1}{1-\lambda \cdot \cos(\Omega) - j \cdot \lambda \cdot \sin(\Omega)}$$ \hspace{1cm} (7.51)

Beide Transformierten stimmen erwartungsgemäß überein. Die Spektren der beiden Folgen sind in Bild 7.7 sowohl als Real- und Imaginärteil, als auch als Betrag und Phase dargestellt.
Bild 7.7: Spektrum der kausalen Exponentialfolgen mit $\lambda = 0.5$ und $\lambda = 0.9$

Der Realteil des Spektrums ist gerade, der Imaginärteil ist ungerade. Der Betrag des Spektrums ist gerade, die Phase ungerade. Damit entsprechen die Symmetrien den in Tabelle 7.3 dargestellten Symmetrieregeln.
7.2 Rechenregeln der Fourier-Transformation von Signalfolgen

7.2.1 Linearität

Wie die übrigen Integraltransformationen ist auch die Fourier-Transformation von Signalfolgen eine lineare Transformation. Durch Einsetzen in die Definitionsgrüllung ergibt sich

\[
\mathcal{F}\{v_1 \cdot x_1[k] + v_2 \cdot x_2[k]\} = \sum_{k=-\infty}^{\infty} (v_2 \cdot x_1[k] + v_2 \cdot x_2[k]) \cdot e^{-j\Omega k}
\]

(7.52)

Im Fall absolut summierbarer Reihen besitzen beide Folgen \(x_1[k]\) und \(x_2[k]\) eigene Fourier-Transformierte \(X_1(\Omega)\) und \(X_2(\Omega)\). In dem Fall gilt das Distributivgesetz

\[
\sum_{k=-\infty}^{\infty} (v_1 \cdot x_1[k] + v_2 \cdot x_2[k]) \cdot e^{-j\Omega k} = \sum_{k=-\infty}^{\infty} v_1 \cdot x_1[k] \cdot e^{-j\Omega k} + \sum_{k=-\infty}^{\infty} v_2 \cdot x_2[k] \cdot e^{-j\Omega k}
\]

(7.53)

Damit ist die Linearitätseigenschaft für Signalfolgen, die eine Fourier-Transformierte besitzen, bewiesen.

Beispiel: Linearität

Mithilfe der Linearität kann zum Beispiel die Fourier-Transformierte der Summe zweier kausaler Exponentialfolgen errechnet werden.

\[
\mathcal{F}\left\{3 \cdot \frac{1}{2} \cdot \sigma[k] - 2 \cdot \frac{1}{5} \cdot \sigma[k]\right\} = \frac{3}{1 - \frac{1}{2} \cdot e^{-j\Omega}} - \frac{2}{1 - \frac{1}{5} \cdot e^{-j\Omega}} = \frac{6}{2 - 1 \cdot e^{-j\Omega}} - \frac{10}{5 - 1 \cdot e^{-j\Omega}}
\]

(7.54)

7.2.2 Verschiebung im Zeitbereich

Ist das Spektrum \(X(\Omega)\) einer Signalfolge \(x[k]\) bekannt, ergibt sich das Spektrum der verschobenen Folge durch Einsetzen in die Definitionsgrüllung zu

\[
\mathcal{F}\{x[k - k_0]\} = \sum_{k=-\infty}^{\infty} x[k - k_0] \cdot e^{-j\Omega k}
\]

(7.55)

Da die Summation von \(-\infty\) bis \(+\infty\) durchgeführt wird, kann der Index \(k\) um \(k_0\) verschoben werden. Es ergibt sich
Das Spektrum ändert nur seine Phase, der Betrag bleibt unverändert.

Beispiel: Verschiebung im Zeitbereich kombiniert mit Linearität

Als Beispiel wird die Fourier-Transformierte der in Bild 7.8 dargestellten Signalfolge berechnet. Sie berechnet sich aus der Differenz zweier Rechteckfolgen der Länge $K = 5$, von denen die erste um $k_1 = 1$ nach rechts und die zweite Rechteckfolge um $k_2 = -5$ nach links verschoben ist.

\[x[k] = \sigma[k-1] - \sigma[k-6] - (\sigma[k+5] - \sigma[k]) \]

(7.57)

Entsprechend ergibt sich die Fourier-Transformierte zu

\[X(\Omega) = e^{-j\frac{4\Omega}{2}} \cdot \frac{\sin\left(\frac{5 \cdot \Omega}{2}\right)}{\sin\left(\frac{\Omega}{2}\right)} \cdot e^{-j\frac{5\Omega}{2}} - e^{-j\frac{4\Omega}{2}} \cdot \frac{\sin\left(\frac{5 \cdot \Omega}{2}\right)}{\sin\left(\frac{\Omega}{2}\right)} \cdot e^{-j(-5)\Omega} \]

(7.58)

Der Betrag des Spektrums ist in Bild 7.8 dargestellt.

Bild 7.8: Signalfolge und Betrag des Spektrums für das Beispiel
Verschiebung im Zeitbereich kombiniert mit Linearität
7.2.3 Verschiebung im Frequenzbereich

Eine Verschiebung kann nicht nur im Zeitbereich, sondern auch im Frequenzbereich erfolgen. In diesem Fall ergibt sich die zugehörige Zeitfunktion aus

\[X(\Omega - \Omega_0) = \sum_{k=-\infty}^{\infty} x[k] \cdot e^{jk(\Omega - \Omega_0)} = \sum_{k=-\infty}^{\infty} x[k] \cdot e^{-jk\Omega_0} \cdot e^{jk\Omega} = \mathcal{F}\{x[k] \cdot e^{jk\Omega_0}\} \]

Beispiel: Frequenzverschiebung

Typisches Beispiel für eine Frequenzverschiebung ist eine Modulation. Dabei wird eine Folge \(x[k] \) mit einer harmonischen Folge multipliziert.

\[y[k] = x[k] \cdot \cos(\Omega_0 \cdot k) = x[k] \cdot \frac{1}{2} \left(e^{j\Omega_0 k} + e^{-j\Omega_0 k} \right) \]

Durch die Multiplikation verschiebt sich das ursprüngliche Spektrum \(X(\Omega) \) um \(\Omega_0 \) nach links und rechts.

\[Y(\Omega) = \frac{1}{2} \left(X(\Omega + \Omega_0) + X(\Omega - \Omega_0) \right) \]

Das Spektrum wird damit aus dem ursprünglichen Spektralbereich in einen Spektralbereich um \(\pm \Omega_0 \) verschoben. Bild 7.9 stellt die Auswirkung einer Modulation auf den Spektralbereich grafisch dar.

1. Bild 7.9: Beispiel für die Verschiebung eines Spektralbereiches durch Modulation

7.2.4 Zeitsche Spiegelung

Ist das Spektrum \(X(\Omega) \) einer Signalfolge \(x[k] \) bekannt, ergibt sich das Spektrum der Folge \(x[-k] \) durch Einsetzen in die Definitionsgleichung zu

\[\mathcal{F}\{x[-k]\} = \sum_{k=-\infty}^{\infty} x[-k] \cdot e^{-j\Omega k} = \sum_{n=-\infty}^{\infty} x[n] \cdot e^{j\Omega n} = X(-\Omega) \]

(7.62)
Beispiel: Zeitliche Spiegelung

Als Anwendungen der zeitlichen Spiegelung wird das Spektrum der Folge

\[x[k] = \lambda^k \]

für \(|\lambda| < 1\) berechnet werden. Das Spektrum der einseitigen Exponentialfolge wird über die Definitionsgleichung berechnet.

\[
\mathcal{F}\left\{\lambda^k \cdot \sigma[k]\right\} = \sum_{k=0}^{\infty} (\lambda \cdot e^{-j\omega})^k = \frac{1}{1 - \lambda \cdot e^{-j\omega}}
\]

Diese Folge wird achsensymmetrisch ergänzt. Das Signal ergibt sich durch die Summe einer kausalen Exponentialfunktion, der gespiegelten Funktion und einer Impulsfolge, die den Wert an der Stelle \(k = 0\) korrigiert.

\[
x[k] = \lambda^k \cdot \sigma[k] + \lambda^{-k} \cdot \sigma[-k] - \delta[k]
\]

Das Spektrum errechnet sich mit der Regel der zeitlichen Spiegelung und der Linearität zu

\[
X(\Omega) = \frac{1}{1 - \lambda \cdot e^{-j\omega}} + \frac{1}{1 - \lambda \cdot e^{j\omega}} - 1
\]

Die Folge \(x[k]\) und der Betrag des Spektrums sind in Bild 7.10 dargestellt.

Bild 7.10: Achsensymmetrische Exponentialfolge und ihr Spektrum für \(\lambda = 0.7\)

7.2.5 Differenz von Folgen

Ist das Spektrum \(X(\Omega)\) einer Signalfolge \(x[k]\) bekannt, ergibt sich das Spektrum der Differenz zweier aufeinanderfolgender Folgenwerte \(x[k] - x[k - 1]\) durch Anwendung der Verschiebungsregel zu

\[
\mathcal{F}\{x[k] - x[k - 1]\} = X(\Omega) \cdot (1 - e^{-j\Omega})
\]

Die Differenzregel ist damit eine Anwendung der Verschiebungsregel. Da die Differenz aber der Differentiation zeitkontinuierlicher Signale entspricht, wird sie als eigene Rechenregel dargestellt.
7.2.6 Summe von Folgen

Ist das Spektrum $X(\Omega)$ einer Signalfolge $x[k]$ bekannt, ergibt sich das Spektrum der Summe aller Folgenwerte zu

$$\mathcal{F}\left\{ \sum_{k=-\infty}^{\infty} x[k] \right\} = \frac{1}{1 - e^{-j\Omega}} \cdot X(\Omega) + \pi \cdot X(0) \cdot \sum_{\nu=-\infty}^{\infty} \delta(\Omega + 2 \cdot \pi \cdot \nu)$$

(7.68)

Diese Regel wird ohne Beweis und Beispiel aufgeführt. Der Beweis wird über die Faltungsregel in Kombination mit der Fourier-Transformierten einer Sprungfolge in Übungsaufgabe 7.6.3 geführt.

7.2.7 Differentiation im Frequenzbereich

Wird das Spektrum $X(\Omega)$ einer Signalfolge $x[k]$ abgeleitet, wird die Folge im Zeitbereich linear gewichtet. Es ergibt sich die Rechenregel

$$\mathcal{F}\{k \cdot x[k]\} = j \cdot \frac{dX}{d\Omega}$$

(7.69)

Der Beweis ergibt sich aus einer Umformung der Definitionsgleichung.

$$\frac{dX}{d\Omega} = \frac{d}{d\Omega} \sum_{k=-\infty}^{\infty} x[k] \cdot e^{j\Omega k} = \sum_{k=-\infty}^{\infty} -j \cdot k \cdot x[k] \cdot e^{-j\Omega k} = -j \cdot \sum_{k=-\infty}^{\infty} k \cdot x[k] \cdot e^{-j\Omega k}$$

(7.70)

Beispiel: Differentiation im Frequenzbereich

Die Rechenregel zur Differentiation im Frequenzbereich kann dazu verwendet werden, das Spektrum der Folge

$$x[k] = k \cdot (\sigma[k+K] - \sigma[k-(K+1)]) = k \cdot y[k]$$

(7.71)

zu berechnen. Mit der Regel für die Differentiation im Frequenzbereich und dem Spektrum der Rechteckfolge $y[k]$ ergibt sich

$$X(\Omega) = -j \cdot \frac{dY}{d\Omega} = -j \cdot \frac{d}{d\Omega} \sin(K \cdot \Omega) = -j \cdot \frac{K \cdot \cos(K \cdot \Omega) \cdot \sin \left(\frac{\Omega}{2} \right) - \frac{1}{2} \cos \left(\frac{\Omega}{2} \right) \cdot \sin(K \cdot \Omega)}{\sin^{2} \left(\frac{\Omega}{2} \right)}$$

(7.72)

7.2.8 Faltung im Zeitbereich

Das Ausgangssignal zeitdiskreter LTI-System errechnet sich über die Faltungssumme.

$$y[k] = g[k] \ast u[k] = \sum_{k=-\infty}^{\infty} g[k] \cdot u[k-k] = \sum_{k=-\infty}^{\infty} g[k-k] \cdot u[k]$$

(7.73)

Sind die Spektren $G(\Omega)$ der Signalfolge $g[k]$ und $U(\Omega)$ der Signalfolge $u[k]$ bekannt, errechnet sich das Spektrum des Ausgangssignals über das Produkt der beiden Spektren.
Der Beweis kann wie bei der z-Transformation durch Einsetzen in die Definitionsgleichung geführt werden.

\[\mathcal{F}\{g[k] \ast u[k]\} = \mathcal{F}\left\{ \sum_{k=\infty}^{\infty} g[k] \cdot u[k - \kappa] \right\} = \sum_{k=\infty}^{\infty} g[k] \cdot \sum_{\kappa=\infty}^{\infty} u[k - \kappa] \cdot e^{-j\Omega k} \]
\[= \sum_{\kappa=\infty}^{\infty} g[k] \cdot \sum_{k=\infty}^{\infty} u[k - \kappa] \cdot e^{-j\Omega k} \cdot e^{j\Omega \kappa} \]
\[= \sum_{n=\infty}^{\infty} g[k] \cdot e^{-j\Omega k} \cdot \sum_{\kappa=\infty}^{\infty} u[k - \kappa] \cdot e^{j(\Omega \kappa - \kappa)} = \sum_{n=\infty}^{\infty} g[n] \cdot e^{-j\Omega n} \cdot \sum_{m=\infty}^{\infty} u[m] \cdot e^{-j\Omega m} = \mathcal{F}\{G(\Omega) \cdot U(\Omega)\} \]

Vertauschen der Summationsreihenfolge und Substitution ergibt

\[\mathcal{F}\{g[k] \ast u[k]\} = \sum_{k=\infty}^{\infty} g[k] \cdot \sum_{\kappa=\infty}^{\infty} u[k - \kappa] \cdot e^{-j\Omega k} = \sum_{k=\infty}^{\infty} g[k] \cdot \sum_{\kappa=\infty}^{\infty} u[k - \kappa] \cdot e^{-j\Omega k} \cdot e^{j\Omega \kappa} \]
\[= \sum_{\kappa=\infty}^{\infty} g[k] \cdot e^{-j\Omega k} \cdot \sum_{\kappa=\infty}^{\infty} u[k - \kappa] \cdot e^{j(\Omega \kappa - \kappa)} = \sum_{n=\infty}^{\infty} g[n] \cdot e^{-j\Omega n} \cdot \sum_{m=\infty}^{\infty} u[m] \cdot e^{-j\Omega m} = \mathcal{F}\{G(\Omega) \cdot U(\Omega)\} \]

7.2.9 Multiplikation im Zeitbereich

Sind die Spektren \(X(\Omega) \) einer Signalfolge \(x[k] \) und \(W(\Omega) \) einer Signalfolge \(w[k] \) bekannt, errechnet sich das Spektrum des Signals, das aus dem Produkt der beiden Signale

\[y[k] = x[k] \cdot w[k] \]

entsteht, durch Einsetzen der Signale in die Definitionsgleichung

\[Y(\Omega) = \sum_{k=\infty}^{\infty} x[k] \cdot w[k] \cdot e^{-j\Omega k} \]

Die Substitution der Folge \(w[k] \) durch ihre inverse Fourier-Transformierte

\[Y(\Omega) = \sum_{k=\infty}^{\infty} x[k] \cdot \frac{1}{2\pi} \int_{-\pi}^{\pi} W(\Theta) \cdot e^{j\Theta k} \, d\Theta \cdot e^{-j\Omega k} \]

und Tauschen der Reihenfolge von Integration und Summation

\[Y(\Omega) = \sum_{k=\infty}^{\infty} x[k] \cdot \frac{1}{2\pi} \int_{-\pi}^{\pi} W(\Theta) \cdot e^{j\Theta k} \, d\Theta \cdot e^{-j\Omega k} = \frac{1}{2\pi} \int_{-\pi}^{\pi} W(\Theta) \cdot \sum_{k=\infty}^{\infty} x[k] \cdot e^{j(\Theta - \Omega) k} \, d\Theta \]

führt unter Anwendung der Verschiebungsregel im Frequenzbereich zu
7.2 Rechenregeln der Fourier-Transformation von Signalfolgen

\[Y(\Omega) = \frac{1}{2 \cdot \pi} \int_{-\pi}^{\pi} W(\Theta) \cdot \sum_{k=\infty} x[k] \cdot e^{j(\Theta - \omega)k} \, d\Theta = \frac{1}{2 \cdot \pi} \int_{-\pi}^{\pi} W(\Theta) \cdot X(\Omega - \Theta) \, d\Theta \]

\[= \frac{1}{2 \cdot \pi} \cdot X(\Omega) \cdot W(\Omega) \]

(7.81)

Die Multiplikation zweier Folgen im Zeitbereich führt demnach zu einer Faltung der entsprechenden Spektren im Frequenzbereich.

Beispiel: Fensterung als Multiplikation im Zeitbereich

Als Beispiel wird eine Kosinusfolge betrachtet, von der ein Ausschnitt über zwei Periodendauern vorliegt. Der Signalausschnitt ist in Bild 7.11 dargestellt und kann mathematisch beschrieben werden als

\[y[k] = w[k] \cdot x[k] = (\sigma[k + 10] - \sigma[k - 11]) \cdot \cos\left(\frac{2 \cdot \pi}{10} \cdot k\right) \]

\[= (\sigma[k + 10] - \sigma[k - 11]) \cdot \cos\left(\frac{\pi}{5} \cdot k\right) \]

(7.82)

Das Spektrum der Folge \(w[k] \) ergibt sich aus der berechneten Rechteckfolge und der Verschiebungsregel zu

\[W(\Omega) = \frac{\sin\left(\frac{21 \cdot \Omega}{2}\right)}{\sin\left(\frac{\Omega}{2}\right)} \]

(7.83)

Das Spektrum der Kosinusfolge \(x[k] \) wird berechnet zu

\[X(\Omega) = \pi \cdot \left[\delta\left(\Omega + \frac{\pi}{5}\right) + \delta\left(\Omega - \frac{\pi}{5}\right) \right] \]

(7.84)

Die Multiplikation im Zeitbereich führt zu Faltung im Frequenzbereich. Die Faltung der beiden Spektren führt zu einer Verschiebung von \(W(\Omega) \) an die Stellen der Impulse. Damit ergibt sich für das Spektrum \(Y(\Omega) \)

\[Y(\Omega) = \frac{1}{2 \cdot \pi} \cdot \left[\sin\left(\frac{21 \cdot \Omega}{2} + \frac{\pi}{5}\right) \right] + \left[\sin\left(\frac{21 \cdot \Omega}{2} - \frac{\pi}{5}\right) \right] \]

\[= \frac{1}{2} \left[\sin\left(\frac{21 \cdot \Omega}{2} + \frac{\pi}{10}\right) + \sin\left(\frac{21 \cdot \Omega}{2} - \frac{\pi}{10}\right) \right] \]

(7.85)

Signal und Betrag des Spektrums sind in Bild 7.11 dargestellt.
Durch die Multiplikation der Folge mit einer Rechteckfolge wird das Signal ausgeschnitten. Im Frequenzbereich falten sich die Spektren der beiden Signale, wobei das Spektrum der Kosinusfunktion aus zwei Impulsen an den Stellen ±Ω_0 besteht. Durch die Faltung wird das Spektrum der Rechteckfolge an die Stellen ±Ω_0 verschoben. Der Effekt, der bei der Fensterung von Signalen entsteht, wird bei der Schätzung von Spektren in Kapitel 11 weiter vertieft. Zusätzlich wird das Spektrum wegen der Abtastung periodisch in 2π wiederholt.

7.2.10 Parsevalsche Gleichung

Die Parsevalsche Gleichung drückt aus, dass die Summe über dem Quadrat einer Folge gleich dem Integral über dem Quadrat ihrer Transformierten ist. Wie bei zeitkontinuierlichen Signalen wird es dazu verwendet, die Energie eines Signals im Zeitbereich oder im Frequenzbereich zu berechnen.

\[
E = \sum_{k=-\infty}^{\infty} x[k] \cdot x^*[k] = \frac{1}{2\pi} \cdot \int_{-\pi}^{\pi} X(\Omega) \cdot X^*(\Omega) \, d\Omega \tag{7.86}
\]

Der Beweis dieser Rechenregel ergibt sich aus der Faltungsregel. Der linke Teil der Gleichung entspricht der Faltungssumme von $x[k]$ und $x^*[k]$ an der Stelle $k = 0$.

\[
x[k] \ast x^*[\,-k] = \sum_{k=0}^{\infty} x[k] \cdot x^*[\,-(k+\kappa)] = \sum_{\kappa=0}^{\infty} x[k] \cdot x^*[\,-k+\kappa] = \sum_{\kappa=0}^{\infty} x[k] \cdot x^*[k] \tag{7.87}
\]

Der Faltung im Zeitbereich entspricht die Multiplikation im Frequenzbereich. Mit den Spektren

\[
x[k] \leadsto X(\Omega) \tag{7.88}
\]

und

\[
x^*[\,-k] \leadsto X^*(\Omega) \tag{7.89}
\]

sowie der Definitionsgleichung für die inverse Fourier-Transformierte an der Stelle $k = 0$ ergibt sich

\[
\sum_{\kappa=0}^{\infty} x[k] \cdot x^*[k] = \frac{1}{2\pi} \cdot \int_{-\pi}^{\pi} X(\Omega) \cdot X^*(\Omega) \cdot e^{j\kappa\Omega} \, d\Omega
\lt\kappa=0\gt = \frac{1}{2\pi} \cdot \int_{-\pi}^{\pi} X(\Omega) \cdot X^*(\Omega) \, d\Omega \tag{7.90}
\]
Der Ausdruck $X(\Omega) \cdot X^*(\Omega)$ entspricht dem Betragsquadrat $|X(\Omega)|^2$ und wird als Energiedichtespektrum bezeichnet. Es ist insbesondere bei der Berechnung stochastischer Prozesse von Bedeutung und wird in Teil C dieser Buchreihe wieder aufgegriffen.

7.2.11 Zusammenfassung der Rechenregeln zur Fourier-Transformation von Signalfolgen

Tabelle 7.4: Rechenregeln der Fourier-Transformation von Signalfolgen

<table>
<thead>
<tr>
<th>Regel</th>
<th>Folge $x[k]$</th>
<th>Fourier-Transformierte $X(\Omega)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linearität</td>
<td>$v_1 \cdot x_1[k] + v_2 \cdot x_2[k]$</td>
<td>$v_1 \cdot X_1(\Omega) + v_2 \cdot X_2(\Omega)$</td>
</tr>
<tr>
<td>Zeitverschiebung</td>
<td>$x[k - k_0]$</td>
<td>$e^{-j\Omega k_0} \cdot X(\Omega)$</td>
</tr>
<tr>
<td>Frequenzverschiebung</td>
<td>$x[k] \cdot e^{j\Omega k_0}$</td>
<td>$X(\Omega - \Omega_0)$</td>
</tr>
<tr>
<td>Zeitliche Spiegelung</td>
<td>$x[-k]$</td>
<td>$X(-\Omega)$</td>
</tr>
<tr>
<td>Differenz</td>
<td>$x[k] - x[k - 1]$</td>
<td>$X(\Omega) \cdot (1 - e^{-j\Omega})$</td>
</tr>
<tr>
<td>Summation</td>
<td>$\sum_{k=\infty} x[k]$</td>
<td>$\frac{1}{1 - e^{-j\Omega}} \cdot X(\Omega) + \pi \cdot X(0) \cdot \sum_{\nu=\infty} \delta(\Omega + 2 \cdot \pi \cdot \nu)$</td>
</tr>
<tr>
<td>lineare Gewichtung</td>
<td>$k \cdot x[k]$</td>
<td>$j \frac{dX}{d\Omega}$</td>
</tr>
<tr>
<td>Faltung</td>
<td>$g[k] \ast u[k]$</td>
<td>$G(\Omega) \cdot U(\Omega)$</td>
</tr>
<tr>
<td>Multiplikation</td>
<td>$x[k] \cdot w[k]$</td>
<td>$\frac{1}{2 \cdot \pi} \cdot X(\Omega) \ast W(\Omega)$</td>
</tr>
<tr>
<td>Parsevalsgleichung</td>
<td>$E = \sum_{k=\infty} x[k] \cdot x^*[k]$</td>
<td>$E = \frac{1}{2 \cdot \pi} \cdot \int_{-\pi}^{\pi} X(\Omega) \cdot X^*(\Omega) , d\Omega$</td>
</tr>
</tbody>
</table>

Mithilfe der zusammengestellten Rechenregeln lassen sich weitere Korrespondenzen bestimmen.
Beispiel: Fourier-Transformierte der Sprungfolge

Die Rechenregeln der zeitdiskreten Fourier-Transformation werden angewendet, um die Korrespondenz der Sprungfolge zu bestimmen. Die Sprungfolge kann in zwei Anteile zerlegt werden, in die konstante Folge

\[x_1[k] = 0.5 \]

und die Folge

\[x_2[k] = \begin{cases} -0.5 & \text{für } k < 0 \\ +0.5 & \text{für } k \geq 0 \end{cases} \]

(7.91)

(7.92)

Die Summe der beiden Folgen ergibt die Sprungfolge. Für den Teil \(x_1[k] \) kann die Fourier-Transformierte mit der Korrespondenz der Einsfolge und der Linearität angegeben werden zu

\[X_1(\Omega) = \pi \cdot \sum_{\nu=-\infty}^{\infty} \delta(\Omega - 2 \cdot \pi \cdot \nu) \]

(7.93)

Zur Ermittlung der Fourier-Transformierten des zweiten Teils \(x_2[k] \) wird die Impulsfolge verwendet. Sie kann dargestellt werden als

\[\delta[k] = x_2[k] - x_2[k-1] \]

(7.94)

Die Fourier-Transformierte der Impulsfolge ist 1 und eine Verschiebung der Funktion um \(k_0 = 1 \) führt zur Multiplikation der Fourier-Transformierten mit \(e^{-j\Omega} \). Damit ergibt sich für die Fourier-Transformierte

\[1 = (1 - e^{-j\Omega}) \cdot \sum_{k=-\infty}^{\infty} x_2[k] \cdot e^{-j\Omega k} = (1 - e^{-j\Omega}) \cdot X_2(e^{j\Omega}) \]

(7.95)

und durch Auflösen

\[X_2(\Omega) = \frac{1}{1 - e^{-j\Omega}} \]

(7.96)

Durch Superposition von Gleichung (7.93) und Gleichung (7.96) ergibt sich die Fourier-Transformierte des diskreten Einheitssprungs zu
\[\mathcal{F}(\sigma[k]) = \frac{1}{1 - e^{-j\pi}} + \pi \cdot \sum_{\nu=\pm1}^\infty \delta(\Omega - 2\pi \nu)\]

(7.97)

Bild 7.13 stellt den diskreten Einheitssprung und den Betrag seiner Fourier-Transformierten gegenüber.
7.2.12 Korrespondenzen der Fourier-Transformation von Signalfolgen

Tabelle 7.5 stellt wichtige Korrespondenzen der Fourier-Transformation von Signalfolgen zusammen.

Tabelle 7.5: Korrespondenzen der Fourier-Transformation von Signalfolgen

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Folge (x[k])</th>
<th>Fourier-Transformierte (X(\Omega))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(\delta[k])</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>(2 \cdot \pi \cdot \sum_{\nu=-\infty}^{\infty} \delta(\Omega + 2 \cdot \pi \cdot \nu))</td>
</tr>
<tr>
<td>3</td>
<td>(\delta[k-k_0])</td>
<td>(e^{-j\Omega k_0})</td>
</tr>
<tr>
<td>4</td>
<td>(\lambda^k \cdot \sigma[k])</td>
<td>(\frac{1}{1-\lambda \cdot e^{-j\Omega}}) für (</td>
</tr>
<tr>
<td>5</td>
<td>((k+1) \cdot \lambda^k \cdot \sigma[k])</td>
<td>(\frac{1}{(1-\lambda \cdot e^{-j\Omega})^2}) für (</td>
</tr>
<tr>
<td>6</td>
<td>(\sigma[k])</td>
<td>(\frac{1}{1-e^{-j\Omega}} + \pi \cdot \sum_{\nu=-\infty}^{\infty} \delta(\Omega + 2 \cdot \pi \cdot \nu))</td>
</tr>
<tr>
<td>7</td>
<td>(e^{j\Omega k_0})</td>
<td>(2 \cdot \pi \cdot \sum_{\nu=-\infty}^{\infty} \delta(\Omega - \Omega_0 + 2 \cdot \pi \cdot \nu))</td>
</tr>
<tr>
<td>8</td>
<td>(x[k] = \sigma[k] - \sigma[k-k_0])</td>
<td>(e^{-j \Omega \frac{(k_0-1)}{2}} \cdot \frac{\sin\left(k_0 \cdot \Omega \right)}{\sin\left(\Omega \frac{2}{2}\right)})</td>
</tr>
<tr>
<td>9</td>
<td>(\sin[\Omega_0 \cdot k])</td>
<td>(j \cdot \pi \cdot \sum_{\nu=-\infty}^{\infty} \delta(\Omega + \Omega_0 + 2 \cdot \pi \cdot \nu) - \delta(\Omega - \Omega_0 + 2 \cdot \pi \cdot \nu))</td>
</tr>
<tr>
<td>10</td>
<td>(\cos[\Omega_0 \cdot k])</td>
<td>(\pi \cdot \sum_{\nu=-\infty}^{\infty} \delta(\Omega + \Omega_0 + 2 \cdot \pi \cdot \nu) + \delta(\Omega - \Omega_0 + 2 \cdot \pi \cdot \nu))</td>
</tr>
<tr>
<td>11</td>
<td>(\text{sgn}[k])</td>
<td>(\frac{2}{1-e^{-j\Omega}})</td>
</tr>
</tbody>
</table>
7.3 Fourier-Transformation von Signalfolgen und andere Integraltransformationen

7.3.1 Zusammenhang zwischen Fourier-Transformation von Signalfolgen und Fourier-Transformation kontinuierlicher Signale

Bild 7.14: Zusammenhang zwischen den Spektren des zeitkontinuierlichen Signals \(x(t) \), des abgetasteten Signals \(x_A(t) \) und der Fourier-Transformierten der entsprechenden Folge \(x_D[k] \)

Das zeitkontinuierliche Signal \(x(t) \) besitzt ein Spektrum \(X(\omega) \). Um das Abtasttheorem zu erfüllen, wird es mit einem Tiefpass bandbegrenzt. Es entsteht das Signal \(x_{TP}(t) \) mit dem Spektrum \(X_{TP}(\omega) \). Wegen der Abtastung ist das Spektrum \(X_A(\omega) \) periodisch in \(\omega \) und mit dem Kehrwert der Abtastzeit \(1/T_A \) skaliert. Die Folge \(x_D[k] \) der Abtastwerte besitzt das Spektrum \(X_D(\Omega) \), das für \(\Omega = \omega \cdot T_A \) dem Spektrum \(X_A(\omega) \) entspricht. Das Basisband von dem Spektrum \(X_A(\omega) \) entspricht dem Spektrum \(X_{TP}(\omega) \) und, wenn das Signal \(x(t) \) bandbegrenzt ist, auch dem Spektrum \(X(\omega) \). Dieser Zusammenhang der verschiedenen Signale und ihrer Spektren wird an einem Beispiel illustriert.

Beispiel: Zusammenhang zwischen Spektren zeitkontinuierlicher Signale und Signalfolgen

Gegeben ist ein kausales, zeitkontinuierliches Signal

\[
x(t) = (e^{-\sigma t} - e^{-21}) \cdot \sigma(t)
\]
(7.98)

Das Signal besitzt die Laplace-Transformierte

\[
X(s) = \frac{1}{s+1} - \frac{1}{s+2} = \frac{1}{s+1} \cdot \frac{1}{s+2}
\]
(7.99)

Da die Laplace-Transformierte nur Pole in der negativen Halbebene besitzt, ergibt sich das Spektrum \(X(\omega) \) zu
Das zeitkontinuierliche Signal $x(t)$ sowie der Betrag des zugehörigen Spektrums $|X(\omega)|$ sind in Bild 7.15 dargestellt.

Das Signal wird mit einer Abtastzeit $T_A = \pi/25$ abgetastet. Dadurch wird das Spektrum periodisch in $\omega_A = 50$ wiederholt und mit dem Faktor $1/T_A = 25/\pi$ multipliziert. Das Spektrum des ideal abgetasteten Signals $x_a(t)$ ist in Bild 7.16 dargestellt.

Das Spektrum der zugehörigen Signalfolge

$$x_a[k] = (e^{-k \cdot T_A} - e^{-2k \cdot T_A}) \cdot \sigma[k \cdot T_A]$$ \hspace{1cm} (7.101)

ist kontinuierlich und errechnet sich über die Definitionsgleichung der Fourier-Transformation für Folgen zu

$$X_a(\omega) = \sum_{k=-\infty}^{\infty} x_a[k] \cdot 2T_A \cdot e^{-j \omega k} = \sum_{k=-\infty}^{\infty} (e^{-k \cdot T_A} - e^{-2k \cdot T_A}) \cdot \sigma[k \cdot T_A] \cdot e^{-j \omega k}$$ \hspace{1cm} (7.102)

Da es sich um eine kausale Folge handelt, kann die Summe auf zwei geometrische Reihen zurückgeführt und berechnet werden.
7.3 Fourier-Transformation von Signalfolgen und andere Integraltransformationen

\[X_0(\Omega) = \sum_{k=0}^{\infty} \left(e^{-kT_k} - e^{-2kT_k} \right) \cdot e^{-j\Omega k} = \sum_{k=0}^{\infty} e^{-kT_k} \cdot e^{-j\Omega k} - \sum_{k=0}^{\infty} e^{-2kT_k} \cdot e^{-j\Omega k} \]
\[= \sum_{k=0}^{\infty} (e^{-\tau_k - j\Omega})^k - e^{2\sum_{k=0}^{\infty} (e^{-\tau_k - j\Omega})^k} = \frac{1}{1 - e^{-\tau_k - j\Omega}} - \frac{1}{1 - e^{2\tau_k - j\Omega}} \]

(7.103)

Bild 7.17 zeigt die Signalfolge \(x_D[k] \) und den Betrag des Spektrums der Signalfolge \(|X_D(\Omega)| \) im Vergleich zum Spektrum \(X_A(\omega) \) des ideal abgetasteten Signals \(x_A(t) \), wobei \(X_A(\omega) \) mit normierter Frequenz dargestellt ist.

Ein Vergleich der unterschiedlichen Spektren zeigt, dass mit der Fourier-Transformation der Signalfolge \(x_D[k] \) das Spektrum des zeitkontinuierlichen Signals berechnet werden kann, wenn das Abtasttheorem eingehalten wird. Allerdings müssen dazu unendlich viele Abtastwerte \(x_D[k] \) vorliegen, was normalerweise nicht der Fall ist. Die Bestimmung des Spektrums eines Signals bei einer endlichen Anzahl von Abtastwerten wird in Kapitel 11 diskutiert.

7.3.2 Zusammenhang zwischen z-Transformation und Fourier-Transformation kausaler Signalfolgen

Bei dem Vergleich der Definitionsgleichungen der z-Transformation

\[X(z) = \sum_{k=0}^{\infty} x[k] \cdot z^{-k} \]

(7.104)

und der Fourier-Transformation von kausalen Folgen

\[X(\Omega) = \sum_{k=0}^{\infty} x[k] \cdot e^{-jk\Omega} \]

(7.105)

fällt auf, dass die Variable \(z \) der z-Transformation bei der Fourier-Transformation von kausalen Folgen durch den Ausdruck \(e^{j\Omega} \) ersetzt wird. Grafisch gesehen wird bei dem Übergang von der z-Transformierten auf die Fourier-Transformierte das Spektrum über dem Einheitskreis abgewickelt.
Beispiel: Zusammenhang zwischen z-Transformation und Fourier-Transformation von Signalfolgen

Dieser Sachverhalt wird anhand eines Signals mit der z-Transformierten

\[
X(z) = \frac{z^2}{z^2 - z + 0.5} \quad (7.106)
\]

anschaulich dargestellt. Bild 7.18 zeigt die Pol-Nullstellenverteilung der z-Transformierten \(X(z) \).

Die z-Transformierte \(X(z) \) hat ein konjugiertes Polpaar an der Stelle \(\alpha = 0.5 \pm 0.5 \cdot j \) und eine doppelte Nullstelle \(\beta = 0 \). Beide Pole liegen innerhalb des Einheitskreises. Der Betrag der z-Transformierten und der Betrag der Fourier-Transformierten werden in Bild 7.19 verglichen.

In der linken Grafik ist der Betrag der z-Transformierten \(X(z) \) und der Betrag des Spektrums. Der Betrag des Spektrums ist nahe den Polen groß und sinkt mit steigendem Abstand zu den Polen ab.
Bild 7.20 stellt die Phase der z-Transformierten und die Phase der Fourier-Transformierten dar.

Der Vergleich zeigt, dass die Fourier-Transformierte einer Folge aus der z-Transformierten über die Substitution $z = e^{j\Omega}$ gewonnen werden kann. Dazu ist es allerdings erforderlich, dass der Einheitskreis im Konvergenzbereich der z-Transformierten liegt. Nach den Ausführungen zur z-Transformation in Kapitel 5.1 ist das der Fall, wenn alle Pole der z-Transformierten im Einheitskreis liegen.

Beispiel: Berechnung der Fourier-Transformierten aus der z-Transformierten

Die Fourier-Transformierte eines Signals mit der z-Transformierten

$$X(z) = \frac{z^2}{z^2 - z + 0.5} \quad (7.107)$$

soll berechnet werden. Die Pole der z-Transformierten liegen nach Bild 7.18 innerhalb des Einheitskreises. Damit ergibt sich die Fourier-Transformierte aus

$$X(\Omega) = X(z)_{|z = e^{j\Omega}} = \frac{e^{j2\Omega}}{e^{j2\Omega} - e^{j\Omega} + 0.5} \quad (7.108)$$

Der Betrag des Spektrums ist bereits in Bild 7.19 dargestellt.

Im Online-Portal Systemtheorie Online verdeutlicht die Applikation *Komplexe Exponentialfolge* den Zusammenhang zwischen der Pollage in der komplexen Ebene und dem Spektrum der Signalfolge.
7.4 Berechnung von Korrespondenzen der Fourier-Transformation von Signalfolgen

\[X(\Omega) = \sum_{k=-\infty}^{\infty} x[k] \cdot e^{-j\Omega k} \]

\[x[k] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\Omega) \cdot e^{j\Omega k} \, d\Omega \]

Bild 7.21: Methoden zur Berechnung von Korrespondenzen der Fourier-Transformation von Signalfolgen

Korrespondenzen der Fourier-Transformation können über die Definitionsgleichungen der Fourier-Transformation und der inversen Fourier-Transformation berechnet werden, wenn die entsprechenden Integrale konvergieren. Bei Energiesignalen ist das für die Definitionsgleichung der Fourier-Transformation generell der Fall. Bei Leistungssignalen wird ausgehend von einer Fourier-Transformierten \(X(\Omega) \) die zugehörige Signalfolge \(x[k] \) bestimmt.

Aus der z-Transformierten \(X(z) \) ergibt sich die Fourier-Transformierte \(X(\Omega) \) durch Substitution, wenn die Signalfolge \(x[k] \) kausal ist und die Pole von \(X(z) \) im Einheitskreis \((|\alpha| < 1)\).
7.5 Literatur

7.5.1 Literaturstellen mit besonders anschaulicher Darstellung

7.5.2 Literaturstellen mit praktischen Anwendungen

7.5.3 Literatur zu MATLAB

[Schw07] Schweizer, Wolfgang: MATLAB kompakt, Oldenbourg Verlag München, 2007

7.5.4 Weiterführende Literatur

7.5.5 Literatur zum Projekt

[]
7.6 Übungsaufgaben - Fourier-Transformation von Signalfolgen

7.6.1 Fourier-Transformierten von Signalfolgen

Gegeben sind verschiedene Folgen $x_i[k]$. Berechnen Sie das Spektrum der Folgen über die Definitionsgleichung der Fourier-Transformation von Signalfolgen.

$x_1[k] = 0.8^k \cdot \sigma[k]$, \hspace{1cm} $x_2[k] = 0.5^k \cdot \cos(4 \cdot k) \cdot \sigma[k]$

$x_3[k] = k \cdot 0.5^k \cdot \sigma[k]$, \hspace{1cm} $x_4[k] = k \cdot 0.5^k \cdot \cos(4 \cdot k) \cdot \sigma[k]$

$x_5[k] = 0.5^k \cdot \cos^2(4 \cdot k) \cdot \sigma[k]$

7.6.2 Anwendung der Rechenregeln zur Fourier-Transformation von Folgen

Die Folge $x[k]$ besitzt die Fourier-Transformierte

$X(\Omega) = \frac{1}{b + e^{i\Omega}}$

Bestimmen Sie die Fourier-Transformierten für die folgenden diskreten Folgen mithilfe der Rechenregeln der Fourier-Transformation von Signalfolgen.

$x_1[k] = x[k - 5]$, \hspace{1cm} $x_2[k] = x[-k]$

$x_3[k] = k \cdot x[k]$, \hspace{1cm} $x_4[k] = x[k] - x[k - 1]$

$x_5[k] = x[k] \ast x[k]$, \hspace{1cm} $x_6[k] = x[k] \cdot \cos(3 \cdot k)$

7.6.3 Beweis der Summationsregel

Beweisen Sie die Summationsregel

$\mathcal{F}\left\{ \sum_{k=-\infty}^{\infty} x[k] \right\} = \frac{1}{1 - e^{-i\Omega}} \cdot X(\Omega) + \pi \cdot X(0) \cdot \sum_{\nu=0}^{\infty} \delta(\Omega + 2 \cdot \pi \cdot \nu)$

Mithilfe der Rechenregel zur Faltung im Zeitbereich.

7.6.4 Berechnung des Spektrums über die z-Transformation

Berechnen Sie die Fourier-Transformierten der angegebenen Signalfolgen mithilfe der z-Transformation.

$x_1[k] = k \cdot 0.3^{k-1} \cdot \sigma[k]$

$x_2[k] = 0.6^k \cdot \sigma[k-1] - (-0.4)^k \cdot \sigma[k-1]$
7.6.5 Spektrum der Fourier-Transformierten

Gegeben sind die Spektren $X_i(\Omega)$, sie sind periodisch in 2π.

Berechnen Sie die zugehörigen Folgen $x_i[k]$ der Fourier-Transformierten über die Definitionsgleichung der inversen Fourier-Transformation von Signalfolgen.

7.6.6 Spektrum der Sinusfolge

Berechnen Sie die Korrespondenz zur Sinusfolge

$$x[k] = \cos(k \cdot \Omega_0)$$ \hspace{1cm} (7.109)

7.6.7 Fourier-Transformierte des Hanning-Fensters

Die Folge $x[k]$ ist im Bereich $0 \leq k \leq K$ definiert als

$$x[k] = \frac{1}{2} \left(1 - \cos \left(\frac{2 \cdot \pi \cdot k}{K} \right) \right) \cdot (\sigma[k] - \sigma[k - K - 1])$$

Außerhalb dieses Bereiches ist die Folge null.

a) Stellen Sie die Folge $x[k]$ für $K = 8$ grafisch dar.
b) Berechnen Sie die Fourier-Transformierte der Folge $x[k]$ allgemein und für $K = 8$.
c) Stellen Sie das Spektrum der Folge für $K = 8$ grafisch dar.
7.7 Musterlösungen - Fourier-Transformation von Signalfolgen

7.7.1 Fourier-Transformierten von Signalfolgen

a) Die Fourier-Transformierte der Folge \(x_1[k] \) wird über die unendliche geometrische Reihe berechnet.

\[
X_1(\Omega) = \sum_{k=-\infty}^{\infty} x_1[k] \cdot e^{-j\Omega k} = \sum_{k=-\infty}^{\infty} 0.8^k \cdot e^{-j\Omega k} \cdot \sigma[k] = \sum_{k=0}^{\infty} (0.8 \cdot e^{-j\Omega})^k
\]

Da der Klammerausdruck einen Betrag hat, der kleiner als eins ist, ergibt sich

\[
X_1(\Omega) = \frac{1}{1-0.8 \cdot e^{-j\Omega^*}}
\]

b) Die Fourier-Transformierte der Folge \(x_2[k] \) wird in zwei Teile aufgeteilt und anschließend ebenfalls über die unendliche geometrische Reihe berechnet.

\[
X_2(\Omega) = \sum_{k=-\infty}^{\infty} x_2[k] \cdot e^{-j\Omega k} = \sum_{k=-\infty}^{\infty} 0.5^k \cdot \cos(4 \cdot k) \cdot e^{-j\Omega k} \cdot \sigma[k] = \sum_{k=-\infty}^{\infty} 0.5^k \cdot \frac{1}{2} \cdot (e^{-j4k} + e^{j4k}) \cdot e^{-j\Omega k}
\]

\[
X_2(\Omega) = \frac{1}{2} \sum_{k=-\infty}^{\infty} 0.5^k \cdot (e^{-j(4k-\Omega)} + e^{j(4k-\Omega)}) = \frac{1}{2} \sum_{k=-\infty}^{\infty} 0.5^k \cdot e^{-j(4k-\Omega)} + \frac{1}{2} \sum_{k=-\infty}^{\infty} 0.5^k \cdot e^{j(4k-\Omega)}
\]

Daraus ergibt sich

\[
X_2(\Omega) = \frac{1}{2} \cdot \frac{1}{1-0.5 \cdot e^{-j(4\Omega)}} + \frac{1}{2} \cdot \frac{1}{1-0.5 \cdot e^{j(4\Omega)}} = \frac{1}{2} \cdot \frac{1}{1-0.5 \cdot e^{-j(4\Omega)}} + \frac{1}{2} \cdot \frac{1}{1-0.5 \cdot e^{j(4\Omega)}}
\]

c) Die Fourier-Transformierte der Folge \(x_3[k] \) wird über lineare Gewichtung berechnet.

\[
X_3(\Omega) = \sum_{k=-\infty}^{\infty} x_3[k] \cdot e^{-j\Omega k} = \sum_{k=-\infty}^{\infty} k \cdot 0.5^k \cdot \sigma[k] \cdot e^{-j\Omega k} = \sum_{k=-\infty}^{\infty} k \cdot (0.5 \cdot e^{-j\Omega})^k = \sum_{k=0}^{\infty} k \cdot y_3[k]
\]

Mit der Korrespondenz zur einseitigen Exponentialfolge

\[
Y_3(\Omega) = \frac{1}{(1-0.5 \cdot e^{-j\Omega})}
\]

ergibt sich die Fourier-Transformierte aus der Ableitung von \(Y_3 \) nach \(\Omega \).

\[
X_3(\Omega) = j \cdot \frac{d}{d\Omega} \left(\frac{1}{1-0.5 \cdot e^{-j\Omega}} \right) = j \cdot \frac{-0.5 \cdot (-j) \cdot e^{-j\Omega}}{(1-0.5 \cdot e^{-j\Omega})^2} = \frac{0.5 \cdot e^{j\Omega}}{(1-0.5 \cdot e^{j\Omega})^2}
\]

d) Die Fourier-Transformierte der Folge \(x_4[k] \) wird ebenfalls über lineare Gewichtung in Kombination mit der Eulerschen Formel berechnet.

\[
X_4(\Omega) = \sum_{k=-\infty}^{\infty} x_4[k] \cdot e^{-j\Omega k} = \sum_{k=-\infty}^{\infty} k \cdot 0.5^k \cdot \cos(4 \cdot k) \cdot \sigma[k] \cdot e^{-j\Omega k} = \sum_{k=-\infty}^{\infty} k \cdot \frac{1}{2} \cdot (e^{-j4k} + e^{j4k}) \cdot (0.5 \cdot e^{-j\Omega})^k
\]

\[
X_4(\Omega) = \frac{1}{2} \sum_{k=-\infty}^{\infty} k \cdot (0.5 \cdot e^{-j\Omega} \cdot e^{-j4} + 0.5 \cdot e^{j\Omega} \cdot e^{j4})^k = \frac{1}{2} \sum_{k=-\infty}^{\infty} k \cdot (0.5 \cdot e^{-j\Omega \cdot 4} + 0.5 \cdot e^{j\Omega \cdot 4})^k
\]

\[
X_4(\Omega) = \frac{1}{2} \cdot \frac{0.5 \cdot e^{-j(\Omega+4)}}{(1-0.5 \cdot e^{j(\Omega+4)})^2} + \frac{1}{2} \cdot \frac{0.5 \cdot e^{-j(\Omega-4)}}{(1-0.5 \cdot e^{j(\Omega-4)})^2}
\]
c) Die Folge \(x_5[k] \) kann umgeformt werden zu
\[
x_5[k] = 0.5^k \cdot \cos^2(4 \cdot k) \cdot \sigma[k] = 0.5^k \left(\frac{1}{2} + \frac{1}{2} \cdot \cos(8 \cdot k) \right) \cdot \sigma[k]
\]
Damit ergibt sich die Fourier-Transformierte zu
\[
X_5(\Omega) = \sum_{k=-\infty}^{\infty} x_5[k] \cdot e^{-j\Omega k} = \sum_{k=-\infty}^{\infty} 0.5^k \cdot \frac{1}{2} \left(1 + \cos(8 \cdot k) \right) \cdot \sigma[k] \cdot e^{-j\Omega k}
\]
\[
= \sum_{k=-\infty}^{\infty} \frac{1}{2} \left(0.5 \cdot e^{-j\Omega} \right)^k + \frac{1}{4} \left(0.5 \cdot e^{-j\Omega} \right)^k \left(e^{j8k} + e^{-j8k} \right)
\]
\[
= \sum_{k=-\infty}^{\infty} \frac{1}{2} \left(0.5 \cdot e^{-j\Omega} \right)^k + \frac{1}{4} \left(0.5 \cdot e^{-j(\Omega-8)} \right)^k + \frac{1}{4} \left(0.5 \cdot e^{-j(\Omega-8)} \right)^k
\]
Mit der unendlichen geometrischen Reihe ergibt sich
\[
X_5(\Omega) = \frac{1}{2} \frac{1}{1 - 0.5 \cdot e^{-j\Omega}} + \frac{1}{4} \frac{1}{1 - 0.5 \cdot e^{-j(\Omega-8)}} + \frac{1}{4} \frac{1}{1 - 0.5 \cdot e^{-j(\Omega-8)}}
\]
\[
= \frac{1}{2 - e^{-j\Omega}} + \frac{1}{4 - 2 \cdot e^{-j(\Omega-8)}} + \frac{1}{4 - 2 \cdot e^{-j(\Omega-8)}}
\]

7.7.2 Fourier-Transformierten

Die Folge besitzt gemäß der Aufgabenstellung die Fourier-Transformierte
\[
X(\Omega) = \frac{1}{b + e^{j\Omega}}
\]
a) Die Folge \(x_1[k] \) ist gegenüber der Folge \(x[k] \) verschoben.
\[
x_1[k] = x[k - 5]
\]
Mit der Verschiebungsregel ergibt sich die Fourier-Transformierte
\[
X_1(\Omega) = \frac{1}{b + e^{j\Omega}} \cdot e^{-j\Omega \cdot 5}
\]
b) Die Folge \(x_2[k] \) entspricht der zeitlich invertierten Folge \(x[k] \).
\[
x_2[k] = x[-k]
\]
Mit der Regel zur zeitlichen Invertierung ergibt sich die Fourier-Transformierte
\[
X_2(\Omega) = \frac{1}{b + e^{-j\Omega}}
\]
c) Die Folge \(x_3[k] \) entspricht der Folge \(x[k] \) mit einer linearen Gewichtung.
\[
x_3[k] = k \cdot x[k]
\]
Mit der Regel zur Ableitung im Frequenzbereich ergibt sich die Fourier-Transformierte
\[
X_3(\Omega) = -\frac{1}{b^2} \frac{e^{j\Omega}}{(1 + \frac{1}{b} \cdot e^{j\Omega})^2}
\]
d) Die Fourier-Transformierte der Folge $x_4[k]$ wird über die Verschiebung berechnet.

$$X_4(\Omega) = \frac{1}{b+e^{j\Omega}} - \frac{1}{b+e^{-j\Omega}} \cdot e^{-j\Omega} = \frac{1}{b+e^{j\Omega}} \cdot (1 - e^{-j\Omega})$$

e) Die Fourier-Transformierte der Folge $x_5[k]$ wird über die Faltung beziehungsweise Multiplikation im Frequenzbereich berechnet.

$$X_5(\Omega) = \frac{1}{b+e^{j\Omega}} \cdot \frac{1}{b+e^{-j\Omega}} = \frac{1}{(b+e^{j\Omega})^2}$$

f) Die Folge $x_6[k]$ ist eine Multiplikation der Folge $x[k]$ mit einer Kosinusfunktion. Mit der Eulerschen Formel kann sie umgeformt werden zu

$$x_6[k] = x[k] \cdot \cos(3 \cdot k) = \frac{1}{2} \cdot x[k] \cdot (e^{j3k} + e^{-j3k})$$

Damit kann die Fourier-Transformierte berechnet werden zu

$$X_6(\Omega) = \frac{1}{2} \left(X(\Omega + 3) + X(\Omega - 3) \right) = \frac{1}{2} \left(\frac{1}{b+e^{j(\Omega+3)}} + \frac{1}{b+e^{j(\Omega-3)}} \right)$$

7.7.3 Beweis der Summationsregel

Die Summation kann als Faltung dargestellt werden.

$$y[k] = \sum_{\kappa=-\infty}^{k} x[\kappa] = \sum_{\kappa=-\infty}^{\infty} x[\kappa] \cdot \sigma[k - \kappa] = x[k] \ast \sigma[k]$$

Eine Faltung im Zeitbereich führt im Spekralbereich zur Multiplikation der jeweiligen Spektren. Mit der Korrespondenz für die Sprungfolge

$$\mathcal{F}(\sigma[k]) = \frac{1}{1 - e^{-j\Omega}} + \pi \cdot \sum_{\nu=-\infty}^{\infty} \delta(\Omega - 2 \cdot \pi \cdot \nu)$$

ergibt sich

$$Y(\Omega) = X(\Omega) \left(\frac{1}{1 - e^{-j\Omega}} + \pi \cdot \sum_{\nu=-\infty}^{\infty} \delta(\Omega - 2 \cdot \pi \cdot \nu) \right) = X(\Omega) \cdot \frac{1}{1 - e^{-j\Omega}} + \pi \cdot X(0) \cdot \sum_{\nu=-\infty}^{\infty} \delta(\Omega - 2 \cdot \pi \cdot \nu)$$

7.7.4 Berechnung des Spektrums über die z-Transformation

a) Die Folge $x_1[k]$ besitzt die z-Transformierte

$$X_1(z) = \frac{1}{0.3} \cdot \frac{0.3 \cdot z}{(z - 0.3)^2} = \frac{z}{(z - 0.3)^2}$$

Es liegt ein doppelter Pol an der Stelle $\alpha = 0.3$ vor. Damit lautet die Fourier-Transformierte

$$X_1(\Omega) = \frac{e^{j\Omega}}{(e^{j\Omega} - 0.3)^2}$$
b) Die Folge $x_2[k]$ besitzt die z-Transformierte

$$X_2(z) = \frac{0.6 \cdot z}{z-0.6} \cdot z^{-1} + \frac{0.4 \cdot z}{z+0.4} \cdot z^{-1} = \frac{0.6}{z-0.6} + \frac{0.4}{z+0.4}$$

Da die Pole $\alpha_1 = 0.6$ und $\alpha_2 = -0.4$ im Einheitskreis liegen, lautet die Fourier-Transformierte

$$X_2(\Omega) = \frac{0.6}{e^{i\Omega} - 0.6} + \frac{0.4}{e^{i\Omega} + 0.4}$$

7.7.5 Spektrum der Fourier-Transformierten

a) Zur Berechnung der Folge $x_1[k]$ muss das Spektrum abschnittsweise über Geradengleichungen dargestellt werden.

$$x_1[k] = \frac{1}{2 \cdot \pi} \left(\int_{\frac{-\pi}{2\pi}}^{0} \left(1 + \frac{3}{2 \cdot \pi} \cdot \Omega\right) \cdot e^{jk \Omega} \, d\Omega + \int_{\frac{-\pi}{2\pi}}^{\frac{2\pi}{3}} \left(1 - \frac{3}{2 \cdot \pi} \cdot \Omega\right) \cdot e^{jk \Omega} \, d\Omega \right)$$

$$= \frac{1}{2 \cdot \pi} \left(\frac{e^{jk \frac{2\pi}{3}} \cdot \left(3 \cdot \frac{2 \cdot \pi}{3} - j \cdot \Omega \cdot k - 1\right) + j \cdot k}{k^2} \right) + \frac{1}{2 \cdot \pi} \left(\frac{e^{jk \frac{2\pi}{3}} \cdot \left(3 \cdot \frac{2 \cdot \pi}{3} - j \cdot k + \frac{3}{2 \cdot \pi}\right)}{k^2} \right)$$

$$= \frac{1}{2 \cdot \pi} \left(\frac{-3 \cdot \frac{2 \cdot \pi}{3} + j \cdot k - e^{jk \frac{2\pi}{3}} \cdot \frac{3}{2 \cdot \pi}}{k^2} \right) + \frac{1}{2 \cdot \pi} \left(\frac{e^{jk \frac{2\pi}{3}} \cdot \left(3 \cdot \frac{2 \cdot \pi}{3} - j \cdot k + \frac{3}{2 \cdot \pi}\right)}{k^2} \right)$$

$$= \frac{1}{2 \cdot \pi} \left(\frac{-3 \cdot \frac{2 \cdot \pi}{3} + j \cdot k - e^{jk \frac{2\pi}{3}} \cdot \frac{3}{2 \cdot \pi}}{k^2} \right) + \frac{1}{2 \cdot \pi} \left(\frac{e^{jk \frac{2\pi}{3}} \cdot \left(3 \cdot \frac{2 \cdot \pi}{3} - j \cdot k + \frac{3}{2 \cdot \pi}\right)}{k^2} \right)$$

b) Zur Berechnung der Folge $x_2[k]$ kann das Integral zur Rücktransformation abschnittsweise ausgewertet werden.

$$x_2[k] = \frac{1}{2 \cdot \pi} \left(\int_{\frac{-\pi}{2\pi}}^{\frac{\pi}{3}} 1 \cdot e^{jk \Omega} \, d\Omega + \int_{\frac{\pi}{3}}^{\frac{2\pi}{3}} 2 \cdot e^{jk \Omega} \, d\Omega + \int_{\frac{2\pi}{3}}^{\frac{\pi}{3}} 1 \cdot e^{jk \Omega} \, d\Omega \right)$$

$$= \frac{1}{2 \cdot \pi} \left(\left. \frac{e^{jk \frac{\pi}{3}}}{j \cdot k} \right|_{\frac{\pi}{3}}^{\frac{2\pi}{3}} + \left. \frac{2 \cdot e^{jk \frac{\pi}{3}}}{j \cdot k} \right|_{\frac{2\pi}{3}}^{\frac{\pi}{3}} + \left. \frac{e^{jk \frac{\pi}{3}}}{j \cdot k} \right|_{\frac{\pi}{3}}^{\frac{2\pi}{3}} \right)$$

$$= -\frac{1}{2 \cdot \pi \cdot k \cdot j} \left(e^{jk \frac{\pi}{3}} - e^{-jk \frac{\pi}{3}} + e^{jk \frac{2\pi}{3}} - e^{-jk \frac{2\pi}{3}} \right) = -\frac{1}{\pi \cdot k} \left(\sin \left(\frac{\pi}{3} \cdot k \right) + \sin \left(\frac{2 \cdot \pi}{3} \cdot k \right) \right)$$

Alternativ kann das Spektrum in zwei Rechtecke zerlegt werden, die sich überlagern. Die Folge $x_2[k]$ ergibt sich dann aus der Summe der korrespondierenden Teilfolgen.
7.7.6 Spektrum der Sinusfolge

Analog zur Berechnung der Korrespondenz der Kosinusfolge wird die Folge zu dem Spektrum

\[X(\Omega) = \sum_{n=-\infty}^{\infty} \delta(\Omega + \Omega_0 + 2 \cdot \pi \cdot n) - \delta(\Omega - \Omega_0 + 2 \cdot \pi \cdot n) \]

für \(0 < \Omega_0 < \pi\) berechnet. Für die Berechnung wird der Ausdruck in zwei separate Integrale aufgeteilt.

\[
x[k] = \frac{1}{2 \cdot \pi} \cdot \int_{-\infty}^{\infty} \left(\delta(\Omega + \Omega_0) - \delta(\Omega - \Omega_0) \right) \cdot e^{j\Omega k} \, d\Omega
\]

Jedes Integral kann mit der Ausblendeigenschaft der Impulsfunktion gelöst werden.

\[
x[k] = \frac{1}{2 \cdot \pi} \cdot e^{-j\Omega_0 k} \cdot \int_{-\infty}^{\infty} \delta(\Omega + \Omega_0) \, d\Omega - \frac{1}{2 \cdot \pi} \cdot e^{j\Omega_0 k} \cdot \int_{-\infty}^{\infty} \delta(\Omega - \Omega_0) \, d\Omega
\]

\[
= \frac{1}{2 \cdot \pi} \cdot \left(e^{j\Omega_0 k} + e^{-j\Omega_0 k} \right) = 2 \cdot \frac{1}{2 \cdot \pi} \cdot \sin(\Omega_0 \cdot k) = \frac{1}{\pi} \cdot \sin(k \cdot \Omega_0)
\]

Damit ergibt sich die Korrespondenz zur Kosinusfolge zu

\[
\sin(k \cdot \Omega_0) \leftrightarrow j \cdot \pi \cdot \sum_{n=-\infty}^{\infty} -\delta(\Omega + \Omega_0 + 2 \cdot \pi \cdot n) - \delta(\Omega - \Omega_0 + 2 \cdot \pi \cdot n)
\]

7.7.7 Fourier-Transformierte des Hanning-Fensters

a) Die Folge \(w[k]\) ist eine Fensterfunktion, die als Hann-Fenster bezeichnet wird.

\[
x[k] = \frac{1}{2} \left(1 - \cos \left(\frac{2 \cdot \pi \cdot k}{K} \right) \right) \cdot (\sigma[k] - \sigma[k - K - 1])
\]

Die Folge ist in dem folgenden Bild dargestellt.

\[\text{Fenster im Zeitbereich} \quad \text{Fourier-Transformierte des Fensters}\]

b) Die Folge kann in drei Summanden zerlegt werden.

\[
w[k] = \frac{1}{2} \left(1 - \cos \left(\frac{2 \cdot \pi \cdot k}{K} \right) \right) \cdot (\sigma[k] - \sigma[k - K - 1])
\]

\[
= \left(\frac{1}{2} - \frac{1}{4} \cdot e^{\frac{j2\pi k}{K}} - \frac{1}{4} \cdot e^{-\frac{j2\pi k}{K}} \right) \cdot (\sigma[k] - \sigma[k - K - 1])
\]

Der zweite Faktor ist die Rechteckfolge, ihr Spektrum ist bekannt.
\[\sigma[k] - \sigma[k-K] \preceq \frac{1 - e^{-j\kappa \Omega}}{1 - e^{-j\Omega}} \]

\[
W(\Omega) = \left(\frac{1}{2} \frac{1 - e^{-j\kappa \Omega}}{1 - e^{-j\Omega}} - \frac{1}{4} e^{-j\left(\frac{\omega}{\pi}\right)} - \frac{1}{4} e^{-j\left(\frac{\omega}{\pi}\right)} \right)
\]

Für den Sonderfall \(K = 8 \) ergibt sich

\[
W(\Omega) = \left(\frac{1}{2} \frac{1 - e^{-j\kappa \Omega}}{1 - e^{-j\Omega}} - \frac{1}{4} e^{-j\left(\frac{\omega}{\pi}\right)} - \frac{1}{4} e^{-j\left(\frac{\omega}{\pi}\right)} \right)
\]

c) Das Spektrum der Folge ist bereits unter a) dargestellt.
8 Frequenzgang zeitdiskreter Systeme

Der Frequenzgang eines zeitdiskreten Systems kann wie bei zeitkontinuierlichen Systemen mit Ortskurven, Frequenzgangkennlinien und Bode-Diagrammen beschrieben werden. Alle Darstellungsformen werden eingeführt, wobei sich die Darstellungen im Wesentlichen auf Frequenzgangskennlinien und Bode-Diagramme konzentrieren.

8.1 Motivation und Herleitung

Der Begriff des Frequenzgangs eines zeitdiskreten Systems kann auf unterschiedlichen Wegen erklärt werden. Um das Wissen aus zeitkontinuierlichen Systemen, der Systembeschreibung im Zeit- und im z-Bereich sowie die Fourier-Transformation von Signalfolgen miteinander zu vernetzen, werden an dieser Stelle unterschiedliche Motivationen und Herleitungen vorgestellt.

8.1.1 Berechnung des Frequenzgangs aus der Differenzengleichung eines Systems

Ausgangspunkt für die Herleitung des Frequenzgangs eines Systems ist die Differenzengleichung

\[
\sum_{n=0}^{N} c_n \cdot y[k-n] = \sum_{m=0}^{M} d_m \cdot u[k-m]
\] (8.1)

Mit der Verschiebungsregel der Fourier-Transformation für Signalfolgen kann die Gleichung in den Frequenzbereich transformiert werden:

\[
\sum_{n=0}^{N} c_n \cdot Y(\Omega) \cdot e^{-j\Omega n} = \sum_{m=0}^{M} d_m \cdot U(\Omega) \cdot e^{-j\Omega m}
\] (8.2)

Durch Ausklammern von U(Ω) und Y(Ω) ergibt sich
\[G(\Omega) = \frac{Y(\Omega)}{U(\Omega)} = \sum_{m=0}^{M} d_m \cdot e^{-j\alpha_m} \sum_{n=0}^{N} c_n \cdot e^{-j\alpha_n} \] (8.3)

Die resultierende Funktion \(G(\Omega) \) ist der Frequenzgang des Systems bezeichnet. In Abschnitt 8.1.3 wird sich zeigen, dass der Frequenzgang \(G(\Omega) \) für kausale und stabile Systeme gleichzeitig die Fourier-Transformierte der Impulsantwort \(g[k] \) ist.

Beispiel: Rekursives Tiefpass-Filter

Das Vorgehen wird am Beispiel eines rekursiven Tiefpassfilters verdeutlicht. Die Transformation der Differenzengleichung

\[y[k] - GF \cdot y[k-1] = (1 - GF) \cdot u[k] \] (8.4)

in den Frequenzbereich führt mit \(0 < GF < 1 \) zu der Gleichung

\[Y(\Omega) - GF \cdot Y(\Omega) \cdot e^{-j\Omega} = (1 - GF) \cdot U(\Omega) \] (8.5)

Ein Auflösen der Gleichung führt zu der Übertragungsfunktion

\[G(\Omega) = \frac{Y(\Omega)}{U(\Omega)} = \frac{1 - GF}{1 - GF \cdot e^{-j\Omega}} \] (8.6)

Der Frequenzgang wird im Abschnitt 8.2 dargestellt und interpretiert.

8.1.2 Berechnung des Frequenzgangs aus der Übertragungsfunktion \(G(z) \) eines Systems

Die Berechnung der Übertragungsfunktion \(G(\Omega) \) wird in Abschnitt 8.1.1 formal genauso durchgeführt wie die Berechnung der Übertragungsfunktion im \(z \)-Bereich. Ein Vergleich der Fourier- und der \(z \)-Transformierten der Differenzengleichung

\[\sum_{n=0}^{N} c_n \cdot Y(z) \cdot z^n = \sum_{m=0}^{M} d_m \cdot U(z) \cdot z^m \] (8.7)

zeigt, dass die beiden Transformierten und damit auch die beiden Übertragungsfunktionen übereinstimmen, wenn die Variable \(z \) durch den Ausdruck \(e^{j\Omega} \) substituiert wird. Aus Kapitel 7.3.2 ist bekannt, dass diese Substitution nur dann durchgeführt werden darf, wenn der Einheitskreis im Konvergenzbereich der \(z \)-Transformierten \(G(z) \) liegt. Das ist bei stabilen Systemen der Fall, sodass für stabile Systeme gilt:

\[G(\Omega) = \left. G(z) \right|_{z = e^{j\Omega}} \] (8.8)
Beispiel: Rekursives Tiefpass-Filter

Das rekursive Tiefpass-Filter hat im z-Bereich die Übertragungsfunktion

\[G(z) = \frac{1 - GF}{1 - GF \cdot z^{-1}} \] \hspace{1cm} (8.9)

Der Pol der Übertragungsfunktion \(G(z) \) liegt an der Stelle

\[\alpha = GF \] \hspace{1cm} (8.10)

Für \(0 < GF < 1 \) liegt der Pol innerhalb des Einheitskreises. Da in diesem Fall das System stabil ist, ergibt sich für diesen Fall der Frequenzgang des Systems zu

\[G(\Omega) = G(z) \bigg|_{z=e^{j\omega}} = \frac{1 - GF}{1 - GF \cdot e^{-j\omega}} \] \hspace{1cm} (8.11)

8.1.3 Faltungsregel der Fourier-Transformation von Signalfolgen

Bei der Beschreibung von zeitdiskreten Systemen wird das Ausgangssignal \(y[k] \) eines Systems über die Faltung von Eingangssignal \(u[k] \) und Impulsantwort \(g[k] \) berechnet.

\(y[k] = g[k] * u[k] = u[k] * g[k] \) \hspace{1cm} (8.12)

Mit der Faltungsregel der Fourier-Transformation ergibt sich im Frequenzbereich der Zusammenhang

\[Y(\Omega) = G(\Omega) \cdot U(\Omega) = U(\Omega) \cdot G(\Omega) \] \hspace{1cm} (8.13)

Das Spektrum \(Y(\Omega) \) des Ausgangssignals \(y[k] \) errechnet sich aus dem Produkt der Spektren der Impulsantwort \(G(\Omega) \) und des Spektrums des Eingangssignals \(U(\Omega) \). Charakteristisch für das System ist die Übertragungsfunktion \(G(\Omega) \), die sich aus dem Quotienten der Fourier-Transformierten von Aus- und Eingangssignal ergibt.

\[G(\Omega) = \frac{Y(\Omega)}{U(\Omega)} \] \hspace{1cm} (8.14)

Sie entspricht gemäß der obigen Herleitung der Fourier-Transformierten der Impulsantwort \(g[k] \).

Beispiel: Rekursives Tiefpass-Filter

Für ein rekurseses Filter mit der Differenzengleichung

\[y[k] - GF \cdot y[k-1] = (1 - GF) \cdot u[k] \] \hspace{1cm} (8.15)

ergibt sich für \(0 < GF < 1 \) die gegen null konvergierende Impulsantwort

\[g[k] = GF^k \cdot \sigma[k] \] \hspace{1cm} (8.16)
Aus der Impulsantwort wird mit den Rechenregeln der Fourier-Transformation der Frequenzgang be-stimmt zu

\[G(\Omega) = \frac{1 - GF}{1 - GF \cdot e^{-j\Omega}} \]

(8.17)

Alle Wege, den Frequenzgang des rekursiven Filters zu beschreiben, führen damit zu demselben Er-ggebnis.

8.1.4 Reaktion zeitdiskreter Systeme auf eine kausale, harmonische Anregung

Bei zeitkontinuierlichen, kausalen Systemen wird gezeigt, dass ein System bei Anregung mit einer kausalen harmonischen Anregung mit einem Signal antwortet, das sich aus einem Einschwingvorgang und einer harmonischen Antwort gleicher Frequenz zusammensetzt. Dieser Gedanke wird an dieser Stelle aufgegriffen und auf zeitdiskrete Systeme angewendet. Dazu wird zunächst die Systemreaktion auf ein Eingangssignal \(u_1[k] \) der Form

\[u_1[k] = e^{j\Omega_k} \cdot \sigma[k] \]

(8.18)

berechnet. Da das System und die Eingangsfolge kausal sind, ist die Ausgangsfolge für \(k < 0 \) null. Für \(k \geq 0 \) ergibt sich die Ausgangsfolge aus einer endlichen Faltungssumme.

\[y_1[k] = g[k] \ast u_1[k] = \sum_{\kappa=-\infty}^{\infty} g[\kappa] \cdot u_1[k-\kappa] = \sum_{\kappa=0}^{K} g[\kappa] \cdot e^{j\Omega(k-\kappa)} = e^{j\Omega_k} \cdot \sum_{\kappa=0}^{K} g[\kappa] \cdot e^{-j\Omega \kappa} \]

(8.19)

Um auf die Gleichungen für die Fourier-Transformation zu kommen, wird die Summe erweitert:

\[y_1[k] = e^{j\Omega_k} \cdot \sum_{\kappa=0}^{K} g[\kappa] \cdot e^{-j\Omega \kappa} = e^{j\Omega_k} \cdot \sum_{\kappa=0}^{\infty} g[\kappa] \cdot e^{-j\Omega \kappa} \cdot \sigma[k] - e^{j\Omega_k} \cdot \sum_{\kappa=k+1}^{\infty} g[\kappa] \cdot e^{-j\Omega \kappa} \cdot \sigma[k] \]

(8.20)

Analog ergibt sich für die Eingangsfolge

\[u_1[k] = e^{-j\Omega_k} \cdot \sigma[k] \]

(8.21)

die Ausgangsfolge

\[y_2[k] = e^{-j\Omega_k} \cdot \sum_{\kappa=0}^{K} g[\kappa] \cdot e^{j\Omega \kappa} = e^{-j\Omega_k} \cdot \sum_{\kappa=0}^{\infty} g[\kappa] \cdot e^{j\Omega \kappa} \cdot \sigma[k] - e^{-j\Omega_k} \cdot \sum_{\kappa=k+1}^{\infty} g[\kappa] \cdot e^{j\Omega \kappa} \cdot \sigma[k] \]

(8.22)

Mit der Eulerschen Formel kann damit die Systemreaktion auf eine kausale, harmonische Anregung der Form

\[u[k] = A \cdot \cos(\Omega \cdot k) \cdot \sigma[k] = \frac{A}{2} \cdot (e^{j\Omega_k} + e^{-j\Omega_k}) \cdot \sigma[k] \]

(8.23)

berechnet werden. Es ergibt sich die Folge
8.1 Motivation und Herleitung

\[y[k] = \frac{A}{2} \left(e^{j\Omega k} \cdot G(\Omega) - e^{-j\Omega k} \cdot \sum_{\kappa=k+1}^{\infty} g[\kappa] \cdot e^{-j\Omega \kappa} + e^{-j\Omega k} \cdot G(-\Omega) - e^{j\Omega k} \cdot \sum_{\kappa=k+1}^{\infty} g[\kappa] \cdot e^{j\Omega \kappa} \right) \cdot \sigma[k] \]

\[= \frac{A}{2} \left(e^{j\Omega k} \cdot G(\Omega) + e^{-j\Omega k} \cdot G(-\Omega) \right) \cdot \sigma[k] - \frac{A}{2} \left(\sum_{\kappa=k+1}^{\infty} g[\kappa] \cdot e^{-j\Omega \kappa} + \sum_{\kappa=k+1}^{\infty} g[\kappa] \cdot e^{j\Omega \kappa} \right) \cdot \sigma[k] \quad (8.24) \]

Aufgrund der Symmetrieregeln der Fourier-Transformation ist

\[G(-\Omega) = |G(\Omega)| \cdot e^{-j\phi(\Omega)} \quad (8.25) \]

und \(y[k] \) kann vereinfacht werden zu

\[y[k] = \frac{A}{2} \left| G(\Omega) \right| \left(e^{j\Omega k} \cdot e^{j\phi(\Omega)} + e^{-j\Omega k} \cdot e^{-j\phi(\Omega)} \right) \cdot \sigma[k] - \frac{A}{2} \left(\sum_{\kappa=k+1}^{\infty} g[\kappa] \cdot e^{-j\Omega \kappa} + \sum_{\kappa=k+1}^{\infty} g[\kappa] \cdot e^{j\Omega \kappa} \right) \cdot \sigma[k] \quad (8.26) \]

Der erste Term beschreibt die Systemreaktion auf die harmonische Anregung. Sie besitzt die gleiche Frequenz wie das Eingangssignal. Die Amplitude wird mit dem Betrag des Frequenzgangs \(|G(\Omega)| \) multipliziert, die Phase ändert sich gegenüber dem Eingangssignal um die Phase des Frequenzgangs \(\phi(\Omega) \). Der zweite Term beschreibt das Einschwingen des Systems. Bei stabilen Systemen konvergiert die Impulsantwort \(g[k] \) für \(k \to \infty \) gegen null, sodass der zweite Summand bei stabilen Systemen gegen null geht. Damit gelten für zeitdiskrete Systeme bezüglich der Reaktion des Systems auf kausale, harmonische Anregungen dieselben Gesetzmäßigkeiten wie bei zeitkontinuierlichen Systemen.
8.2 Grafische Darstellung des Frequenzgangs

$$G(\Omega) = \sum_{k=-\infty}^{\infty} g[k] \cdot e^{-j\Omega k}$$ \hspace{1cm} (8.27)

$$G(\Omega) = G_R(\Omega) + j \cdot G_I(\Omega) = |G(\Omega)| \cdot e^{j\phi(\Omega)} = A(\Omega) \cdot e^{j\phi(\Omega)}$$ \hspace{1cm} (8.28)

Der Betrag der Übertragungsfunktion $A(\Omega)$ wird als Amplitudengang und die Phase der Übertragungsfunktion $\phi(\Omega)$ wird als Phasengang bezeichnet. Analog zu den Darstellungen des Frequenzgangs zeitkontinuierlicher Signale kann der Frequenzgang von Signalfolgen entweder als Ortskurve oder als Frequenzgangskennlinie dargestellt werden.

8.2.1 Ortskurven

Bei der Ortskurve wird der Frequenzgang in der komplexen Ebene abgebildet. Dazu werden für unterschiedliche Frequenzen $-\pi \leq \Omega \leq \pi$ Real- und Imaginärteil des Frequenzgangs bestimmt und die entsprechenden Punkte in die komplexe Ebene eingezeichnet.

Beispiel: Rekursives Tiefpass-Filter

In Kapitel 8.1 wird der Frequenzgang des rekursiven Tiefpasses erster Ordnung mit $0 < GF < 1$ berechnet.

$$G(\Omega) = \frac{1 - GF}{1 - GF \cdot e^{-j\Omega}}$$ \hspace{1cm} (8.29)

Der Frequenzgang kann durch eine konjugiert komplexe Erweiterung in Real- und Imaginärteil aufgeteilt werden.
Die Grafische Darstellung des Frequenzgangs

\[G(\Omega) = \frac{1 - GF}{1 - GF \cdot e^{-j\Omega}} = \frac{1 - GF}{1 - GF \cdot \cos(\Omega) + j \cdot GF \cdot \sin(\Omega)} \]

\[= (1 - GF) \cdot \frac{1 - GF \cdot \cos(\Omega) - j \cdot GF \cdot \sin(\Omega)}{(1 - GF \cdot \cos(\Omega))^2 + GF^2 \cdot \sin^2(\Omega)} \]

\[= (1 - GF) \cdot \frac{1 - GF \cdot \cos(\Omega)}{1 + GF^2 - 2 \cdot GF \cdot \cos(\Omega)} - j \cdot (1 - GF) \cdot \frac{GF \cdot \sin(\Omega)}{1 + GF^2 - 2 \cdot GF \cdot \cos(\Omega)} \]
(8.30)

Alternativ kann der Frequenzgang in Polarkoordinaten dargestellt werden, es ergibt sich der Betrag

\[A(\Omega) = |G(\Omega)| = \frac{1 - GF}{\sqrt{1 - GF^2 \cdot \cos^2(\Omega) + GF^2 \cdot \sin^2(\Omega)}} \]
(8.31)

und die Phase

\[\varphi(\Omega) = \varphi_Z(\Omega) - \varphi_N(\Omega) = \arctan\left(\frac{\text{Im}(Z)}{\text{Re}(Z)}\right) - \arctan\left(\frac{\text{Im}(N)}{\text{Re}(N)}\right) \]

\[= \arctan\left(\frac{0}{1 - GF}\right) - \arctan\left(\frac{GF \cdot \sin(\Omega)}{1 - GF \cdot \cos(\Omega)}\right) = -\arctan\left(\frac{GF \cdot \sin(\Omega)}{1 - GF \cdot \cos(\Omega)}\right) \]
(8.32)

Für den Frequenzbereich \(-\pi \leq \Omega \leq \pi\) ergeben sich für \(GF = 0.5\) und \(GF = 0.9\) folgende Ortskurven.

Für das Filter mit \(GF = 0.5\) wird die Ortskurve diskutiert. An den Stellen \(\Omega = \pm \pi\) und \(\Omega = 0\) wird der Realteil zu null, der Frequenzgang ist an diesen Stellen reell. Für die normierte Kreisfrequenz \(\Omega = \pm \pi\) wird der Betrag minimal \(A = 1/\sqrt{7}\) und für \(\Omega = 0\) maximal (\(A = 1\)). Das Verhalten entspricht damit einem Tiefpass-Verhalten.

8.2.2 Frequenzgangskennlinien

Ortskurven stellen Real- und Imaginärteil in einem Schaubild dar, allerdings geht die Frequenzinformation bei der Darstellung verloren. Aus diesem Grund ist ihr Frequenzverhalten schwer zu interpretieren und wenig übersichtlich. Alternativ zur Ortskurve wird deshalb der Frequenzgang mit Frequenzgangskennlinien dargestellt. Dabei werden Betrag und Phase in separaten Diagrammen als Funktion der normierten Kreisfrequenz \(-\pi \leq \Omega \leq \pi\) abgebildet. Frequenzgangskennlinien haben den Vorteil, dass der Zusammenhang zwischen Betrag beziehungsweise Phase und Frequenz direkt abgelesen werden kann.
Beispiel: Rekursives Tiefpass-Filter

Wieder wird das Beispiel des rekursiven Tiefpasses mit dem Frequenzgang

\[G(\Omega) = \frac{1 - GF}{1 - GF \cdot e^{-j\Omega}} \] (8.33)
aufgegriffen. Für den Frequenzbereich \(-\pi \leq \Omega \leq \pi\) ergeben sich für GF = 0.5 und GF = 0.9 folgende Frequenzgangskennlinien.

Der Amplitudengang beider Filter weist bei der Frequenz \(\Omega = 0\) mit \(A(0) = 1\) sein Maximum auf. Er fällt bis zu den Stellen \(\Omega = \pm \pi\) ab. An allen drei Stellen ist die Phase \(\varphi = 0\), weil die Übertragungsfunktion \(G(\Omega)\) einen positiven reellen Wert aufweist. Bei dieser Darstellung ist die Tiefpasscharakteristik direkt ablesbar. Es zeigt sich, dass die Grenzfrequenz und die Dämpfung im Sperrbereich von dem Gedächtnisfaktor GF abhängen.

Die normierte Kreisfrequenz \(\Omega = 0\) entspricht dabei der Kreisfrequenz \(\omega = 0\) und die normierten Kreisfrequenzen \(\Omega = \pm \pi\) entsprechen den Kreisfrequenzen \(\pm \omega / 2\). Die Übertragungsfunktion des Systems hat einen Pol an der Stelle \(z = GF \neq 0\). Bei diesem Beispiel handelt es sich demnach um ein System mit unendlich langer Impulsantwort. Es wird als Infinite-Impulse-Response (IIR) System bezeichnet. Der Frequenzgang von IIR-Systemen höherer Ordnung mit rationaler Übertragungsfunktion wird in Abschnitt 8.3 weiter vertieft.

Beispiel: Gleitender Mittelwertfilter

Als zweites Beispiel wird der gleitende Mittelwert einer Signalfolge betrachtet. Es besitzt die Differenzengleichung

\[y[k] = \frac{1}{5} \left(u[k] + u[k - 1] + u[k - 2] + u[k - 3] + u[k - 4] \right) \] (8.34)

Das System hat eine endliche Impulsantwort \(g[k]\), die in Bild 4.2 dargestellt ist. Das Filter wird wegen der endlichen Impulsantwort als Finite-Impulse-Response (FIR) System bezeichnet. Mit der Verschiebungsregel der Fourier-Transformation ergibt sich die Darstellung im Frequenzbereich

\[Y(\Omega) = \frac{1}{5} \left(1 + e^{-j\Omega} + e^{-2j\Omega} + e^{-3j\Omega} + e^{-4j\Omega} \right) \cdot U(\Omega) \] (8.35)

Sie führt zu dem Frequenzgang des gleitenden Mittelwertes.
\[G(\Omega) = \frac{Y(\Omega)}{U(\Omega)} = \frac{1}{5} \left(1 + e^{-j\Omega} + e^{2j\Omega} + e^{3j\Omega} + e^{4j\Omega} \right) \]
\[= \frac{1}{5} e^{2j\Omega} \left(e^{j\Omega} + 1 + e^{-j\Omega} + e^{2j\Omega} \right) \]
\[= \frac{1}{5} e^{2j\Omega} \left(1 + 2 \cdot \cos(\Omega) + 2 \cdot \cos(2 \cdot \Omega) \right) \]
\[= \frac{1}{5} \left(1 + 2 \cdot \cos(\Omega) + 2 \cdot \cos(2 \cdot \Omega) \right) \cdot \left(\cos(2 \cdot \Omega) - j \cdot \sin(2 \cdot \Omega) \right) \]

(8.36)

Der Frequenzgang ist in Bild 8.2 als Frequenzgangskennlinie dargestellt.

Der Amplitudengang zeigt, dass die Spektralanteile mit niedriger Frequenz das Filter ungedämpft passieren können, während Spektralanteile mit höherer Frequenz deutlich abgeschwächt werden. Es handelt sich demnach ebenfalls um ein Tiefpass-Filter.

Der Phasengang besteht aus Abschnitten, die jeweils über eine Gerade beschrieben werden können. Das Springen der Phase um \(\pi\) ergibt sich aus Vorzeichenwechseln der Übertragungsfunktion. Die Sprünge finden bei diesem Beispiel immer dann statt, wenn der Amplitudengang den Wert 0 aufweist, sodass für alle relevanten Frequenzen eine eindeutige Phasenbeziehung gegeben ist.

Auf die Linearität der Phase und die Auswirkung auf das Ausgangssignal wird im Zusammenhang mit FIR-Systemen in Abschnitt 8.4 näher eingegangen.

8.2.3 Bode-Diagramme

Im zeitkontinuierlichen Bereich werden Frequenzgangskennlinien als Bode-Diagramme dargestellt. Dabei wird die Frequenzachse logarithmisch skaliert und der Amplitudengang in Dezibel

\[a(\Omega) = 20 \cdot \log(A(\Omega)) \ \text{dB} \]

(8.37)

dargestellt. Diese Darstellungsform ist auch im zeitdiskreten Bereich gebräuchlich. Allerdings muss dabei berücksichtigt werden, dass der Frequenzgang periodisch in \(2 \pi\) ist. Außerdem kann er wegen des logarithmischen Maßstabs nur positive Frequenzen \(\Omega\) dargestellt werden. Insgesamt beschränkt sich damit der Frequenzbereich auf \(0 < \Omega \leq \pi\).

Das Bode-Diagramm wird bevorzugt für einen Vergleich von analogen und digitalen Systemen eingesetzt. Dazu wird die normierte Frequenzachse \(\Omega\) über
\[\omega = \frac{\Omega}{T_A} \quad (8.38) \]

in eine Frequenzachse \(\omega \) überführt. Damit können die Frequenzgänge des zeitkontinuierlichen und des zeitdiskreten Systems in einem Diagramm verglichen werden.

Beispiel: Vergleich eines zeitkontinuierlichen und zeitdiskreten Tiefpass-Filters

Ein rekursives zeitdiskretes Filter mit dem Frequenzgang

\[
G_d(\Omega) = \frac{1 - GF}{1 - GF \cdot e^{-j\omega}}
\quad (8.39)
\]

mit einem Gedächtnisfaktor \(GF = 0.9 \) wird mit einer Abtastzeit \(T_A = 1 \) ms betrieben. Die Filterwirkung wird mit einem Tiefpass erster Ordnung verglichen, der eine Zeitkonstante \(T = 10 \) ms aufweist.

\[
G_k(\omega) = \frac{1}{1 + j \cdot \omega \cdot T}
\quad (8.40)
\]

Bild 8.3 stellt das Bode-Diagramm für die Tiefpass-Filter dar.

Bild 8.3: Bode-Diagramm eines zeitdiskreten rekursiven Tiefpassfilters mit \(GF = 0.9 \) und \(TA = 1 \) ms und eines zeitkontinuierlichen Tiefpass-Filters mit \(T = 10 \) ms

Die Amplitudengänge sind insbesondere in dem niedrigen Frequenzbereich identisch, erst im Bereich der Abtastfrequenz \(\omega_A/2 \) ergeben sich signifikante Abweichungen. Die Phasengänge sind bereits in niedrigen Frequenzbereich unterschiedlich. Die Ursachen für diese Unterschiede werden in Kapitel **Fehler! Verweisquelle konnte nicht gefunden werden.** behandelt.

*
8.3 Pol-Nullstellen-Diagramm und Frequenzgang eines Systems

Die bislang diskutierten linearen, zeitinvarianten Systeme führen zu linearen Differenzengleichungen mit konstanten Koeffizienten. Ihr Systemverhalten wird mit der z-Transformation durch die Übertragungsfunktion

\[G(z) = \frac{B(z)}{A(z)} = \frac{\sum_{m=0}^{M} b_m \cdot z^{-m}}{\sum_{n=0}^{N} a_n \cdot z^{-n}} = \frac{b_M}{a_N} \cdot \prod_{m=1}^{M} (z - \beta_m) \prod_{n=1}^{N} (z - \alpha_n) \]
(8.41)

beschrieben. Bei stabilen Systemen liegen die Pole \(\alpha_n \) der Übertragungsfunktion im Einheitskreis. In dem Fall ergibt sich der Frequenzgang zu

\[G(\Omega) = G(z)|_{z=e^{j\Omega}} = A(\Omega) \cdot e^{j\varphi(\Omega)} = \frac{b_M}{a_N} \cdot \prod_{m=1}^{M} (e^{j\Omega} - \beta_m) \prod_{n=1}^{N} (e^{j\Omega} - \alpha_n) \]
(8.42)

Der Amplitudengang \(A(\Omega) \) des Systems kann logarithmisch in dB angegeben werden. Der logarithmische Amplitudengang ergibt sich mit den Rechenregeln des Logarithmus zu

\[a(\Omega) = 20 \cdot \log \left(\frac{b_M}{a_N} \prod_{m=1}^{M} (e^{j\Omega} - \beta_m) \prod_{n=1}^{N} (e^{j\Omega} - \alpha_n) \right) \]
(8.43)

\[\varphi(\Omega) = \arg \left(\frac{b_M}{a_N} \right) + \sum_{m=1}^{M} \arg (e^{j\Omega} - \beta_m) - \sum_{n=1}^{N} \arg (e^{j\Omega} - \alpha_n) \]
(8.44)

Im Zähler stehende Linearfaktoren liefern positive und im Nenner stehende Linearfaktoren negative Beiträge. Aus diesem Grund ist die Interpretation des Frequenzgangs eines Linearfaktors der Form

\[G(\Omega) = e^{j\Omega} - \beta \]
(8.45)

von Interesse. Die Frequenzgänge aller stabilen LTI-Systeme können mit dieser Grundlage erstellt werden.

Im Online-Portal Systemtheorie Online verdeutlicht die Applikation *Komplexe Exponentialfolge* den Zusammenhang zwischen der Pollage in der komplexen Ebene und dem Frequenzgang des zugehörigen Systems.
8.3.1 Frequenzgang eines Systems mit einer Nullstelle

Im Folgenden wird unabhängig von der Realisierbarkeit eine Nullstelle im Einheitskreis

\[\beta = r_0 \cdot e^{j\omega_0} \quad (8.46) \]

diskutiert. Mit dieser Definition ergibt sich der Frequenzgang

\[
G(\Omega) = e^{j\Omega} - \beta = e^{j\Omega} - r_0 \cdot e^{j\omega_0} = e^{j\Omega} \cdot \left(1 - r_0 \cdot e^{j(\Omega_0 - \omega_0)}\right) \\
= e^{j\Omega} \cdot \left(1 - r_0 \cdot \cos(\Omega_0 - \Omega) - j \cdot r_0 \cdot \sin(\Omega_0 - \Omega)\right) \quad (8.47)
\]

Der Frequenzgang hat einen Betrag von

\[
A(\Omega) = \sqrt{\left(1 - r_0 \cdot \cos(\Omega_0 - \Omega)\right)^2 + r_0^2 \cdot \sin^2(\Omega_0 - \Omega)} = \sqrt{1 + r_0^2 - 2 \cdot r_0 \cdot \cos(\Omega_0 - \Omega)} \quad (8.48)
\]

und eine Phase von

\[
\varphi(\Omega) = \Omega + \arctan\left(\frac{-r_0 \cdot \sin(\Omega_0 - \Omega)}{1 - r_0 \cdot \cos(\Omega_0 - \Omega)}\right) = \Omega - \arctan\left(\frac{r_0 \cdot \sin(\Omega_0 - \Omega)}{1 - r_0 \cdot \cos(\Omega_0 - \Omega)}\right) \quad (8.49)
\]

Beide Größen können in der komplexen Ebene geometrisch interpretiert werden. Bild 8.4 verdeutlicht die Geometrie für eine feste Kreisfrequenz \(\Omega\).

Bild 8.4: Darstellung von Betrag und Phase im Pol-Nullstellen-Diagramm für ein System mit einer komplexen Nullstelle im Einheitskreis

Der Betrag der Übertagungsfunktion \(A(\Omega)\) ergibt sich nach dem Satz des Pythagoras aus dem rechtwinkligen Dreieck mit den Kantenlängen \(|1 - r_0 \cdot \cos(\Omega - \Omega_0)|\) und \(|r_0 \cdot \sin(\Omega_0 - \Omega_0)|\). Da der Einheitskreis periodisch durchlaufen wird, ergibt sich ein periodischer Amplitudengang. Die Phase des Frequenzgangs \(\varphi(\Omega)\) kann ebenfalls über das rechtwinklige Dreieck berechnet werden. Um den Einfluss der Lage der Nullstelle zu verdeutlichen, wird das Systemverhalten anhand zweier Parameterstudien diskutiert.
8.3.2 Variation des Abstandes der Nullstelle vom Koordinatenursprung

In der ersten Parameterstudie wird der Abstand der Nullstelle vom Koordinatenursprung in den Schritten \(r_1 = 0.5, r_2 = 0.75 \) und \(r_3 = 1 \) variiert und der Einfluss auf Amplitudengang und Phasengang diskutiert. Der Winkel \(\Omega_0 \), den die Nullstelle in der komplexen Ebene besitzt, bleibt konstant auf \(\Omega_0 = \pi/2 \). Zur besseren Übersicht stellt Bild 8.5 die Lage der Nullstelle bei Variation des Abstandes vom Koordinatenursprung in der komplexen Ebene dar.

Der Amplitudengang und der Phasengang berechnen sich für \(\Omega_0 = \pi/2 \) zu

\[
A_n(\Omega) = \sqrt{1 + r_n^2 - 2 \cdot r_n \cdot \cos \left(\frac{\pi}{2} - \Omega \right)},
\]

(8.50)

beziehungsweise zu

\[
\varphi_n(\Omega) = \Omega - \arctan \left(\frac{r_n \cdot \sin \left(\frac{\pi}{2} - \Omega \right)}{1 - r_n \cdot \cos \left(\frac{\pi}{2} - \Omega \right)} \right),
\]

(8.51)

Für die verschiedenen Lagen der Nullstelle ergeben sich die in Bild 8.6 dargestellten Amplituden- und Phasengänge.

Der Amplitudengang weist sein Minimum bei der Frequenz \(\Omega = \Omega_0 = \pi/2 \) auf. In dem Fall wird das Argument der Kosinus-Funktion zu null und damit der Amplitudengang minimal. Der minimale Wert des Amplitudengangs beträgt
\[A_{\text{MIN}}(\Omega) = \sqrt{1 + r_n^2 - 2 \cdot r_n} = 1 - r_n \] (8.52)

Je näher die Nullstelle am Einheitskreis liegt, desto kleiner wird der Amplitudengang an der Stelle \(\Omega = \Omega_0 \). Bei dem Radius \(r_3 = 1 \) wird der Amplitudengang zu null. Das Maximum des Amplitudengangs wird bei der Frequenz \(\Omega = \pi \cdot \Omega_0 = -\pi/2 \) erreicht. Bei dieser Frequenz wird das Argument der Kosinus-Funktion zu \(\pi \) und damit der Amplitudengang maximal. Der maximale Wert des Amplitudengangs beträgt

\[A_{\text{MAX}}(\Omega) = \sqrt{1 + r_n^2 + 2 \cdot r_n} = 1 + r_n \] (8.53)

Der Phasengang springt für den Radius \(r_3 = 1 \) an der Stelle \(\Omega = \Omega_0 = \pi/2 \), da das Argument der Arcus-tangens-Funktion unendlich wird. Der Phasengang ist für \(r_3 \) damit unstetig, ist aber ansonsten linear. Je weiter die Nullstelle vom Einheitskreis entfernt ist, desto stärker wird dieser Sprung abgeflacht. Unabhängig vom Radius beträgt der Phasengang bei der Frequenz \(\Omega = \Omega_0 = \pi/2 \)

\[\varphi\left(\frac{\pi}{2}\right) = \arctan\left(\frac{0}{1 - r}\right) = 0 \] (8.54)

und bei der Frequenz \(\Omega = \pi - \Omega_0 = -\pi/2 \)

\[\varphi\left(-\frac{\pi}{2}\right) = \arctan\left(\frac{0}{1 + r}\right) = 0 \] (8.55)

8.3.3 Variation des Phasenwinkels der Nullstelle

In der zweiten Parameterstudie wird die Phasenlage der Nullstelle mit \(\Omega_1 = 0 \), \(\Omega_2 = \pi/2 \) und \(\Omega_3 = \pi \) variiert. Der Radius bleibt konstant auf dem Wert \(r_0 = 0.7 \). Zur besseren Übersicht stellt Bild 8.7 die Lage der Nullstelle bei Variation des Phasenwinkes \(\Omega_0 \) der Nullstelle dar.

Bild 8.7: Lage der Nullstelle bei Variation des Phasenwinkes der Nullstelle, \(r_0 = 0.7 \)

Der Amplitudengang und der Phasengang berechnen sich für \(r_0 = 0.7 \) zu

\[A_n(\Omega) = \sqrt{1 + 0.7^2 - 2 \cdot 0.7 \cdot \cos(\Omega - \Omega_0)} = \sqrt{1.49 - 1.4 \cdot \cos(\Omega_n - \Omega)} \] (8.56)

beziehungsweise zu
8.3 Pol-Nullstellen-Diagramm und Frequenzgang eines Systems

\[\varphi_n(\Omega) = \Omega - \arctan \left(\frac{0.7 \cdot \sin(\Omega_0 - \Omega)}{1 - 0.7 \cdot \cos(\Omega_0 - \Omega)} \right) \quad (8.57) \]

Für die verschiedenen Lagen der Nullstelle ergeben sich die in Bild 8.8 dargestellten Amplituden- und Phasengänge.

![Amplitudengang und Phasengang](image)

Bild 8.8: Amplituden- und Phasengang bei variertem Phasenwinkel \(\alpha \) der Nullstelle, \(r = 0.7 \)

Durch die unterschiedlichen Phasenwinkel \(\Omega_0 \) verschieben sich Amplituden- und Phasengang um \(\Omega_0 \) nach rechts, ansonsten bleiben Amplituden- und Phasengang gleich.

8.3.4 Interpretationsbeispiel

Gegeben ist ein zeitdiskretes System, das mit einer Abtastzeit von \(T_A = 5 \text{ ms} \) arbeitet und die Übertragungsfunktion

\[G(z) = \frac{z^2 - 0.81}{z^2 + 0.49} = \frac{(z - 0.9) \cdot (z + 0.9)}{(z - j \cdot 0.7) \cdot (z + j \cdot 0.7)} \quad (8.58) \]

besitzt. Das System hat damit zwei Pole und zwei Nullstellen. Da der Zählergrad genauso groß ist wie der Nennergrad, muss zunächst für die Berechnung der Impulsantwort eine Polynomdivision durchgeführt werden. Eine anschließende Partialbruchzerlegung führt zu

\[G(z) = 1 + \frac{j \cdot 0.9286}{z - j \cdot 0.7} - \frac{j \cdot 0.9286}{z + j \cdot 0.7} = 1 + j \cdot 0.9286 \cdot \left(\frac{z}{z - j \cdot 0.7} - \frac{z}{z + j \cdot 0.7} \right) \cdot z^{-1} \quad (8.59) \]

Damit lautet die Impulsantwort des Systems
g[k] = δ[k] + j \cdot 0.9286 \cdot (j \cdot 0.7)^{k-1} - (j \cdot 0.7)^{k-1} \cdot \sigma[k-1]
= δ[k] + j \cdot 0.9286 \cdot 0.7^{k-1} \cdot 2 \cdot j \cdot \sin\left(\frac{\pi}{2} (k-1)\right) \cdot \sigma[k-1]
= δ[k] - 0.9286 \cdot 0.7^{k-1} \cdot 2 \cdot \sin\left(\frac{\pi}{2} (k-1)\right) \cdot \sigma[k-1]

(8.60)

Da der Zählergrad genauso groß ist wie der Nennergrad, ist das System sprungfähig. Die Pol-Nullstellenverteilung sowie die Impulsantwort sind in Bild 8.9 dargestellt.

Die Pole des Systems haben einen Betrag von 0.7. Damit ist das System stabil, und der Frequenzgang kann durch die Substitution \(z = e^{j\Omega} \) bestimmt werden.

\[
G(\Omega) = \frac{(1 - 0.9 \cdot e^{-j\Omega}) \cdot (1 + 0.9 \cdot e^{j\Omega})}{(1 - j \cdot 0.7 \cdot e^{-j\Omega}) \cdot (1 + j \cdot 0.7 \cdot e^{j\Omega})}
\]

(8.61)

Der Frequenzgang setzt sich aus vier Linearfaktoren zusammen. Nach den Darstellungen zum Frequenzgang ergibt sich der logarithmische Amplitudengang zu

\[
a(\Omega) = 10 \cdot \log(1.81 - 1.8 \cdot \cos(\Omega)) + 10 \cdot \log(1.81 + 1.8 \cdot \cos(\Omega))
- 10 \cdot \log(1.49 + 1.4 \cdot \sin(\Omega)) - 10 \cdot \log(1.49 - 1.4 \cdot \sin(\Omega))
\]

(8.62)

und der Phasengang zu

\[
\phi(\Omega) = \arctan\left(\frac{0.9 \cdot \sin(\Omega)}{1 - 0.9 \cdot \cos(\Omega)}\right) + \arctan\left(\frac{-0.9 \cdot \sin(\Omega)}{1 + 0.9 \cdot \cos(\Omega)}\right)
- \arctan\left(\frac{-0.7 \cdot \cos(\Omega)}{1 - 0.7 \cdot \sin(\Omega)}\right) - \arctan\left(\frac{0.7 \cdot \cos(\Omega)}{1 - 0.7 \cdot \sin(\Omega)}\right)
\]

(8.63)
Bild 8.10 stellt den Amplituden- und Phasengang des Systems dar.

Bild 8.10: Frequenzgang des IIR-Systems 2. Ordnung

Bei dem System handelt es sich um einen zeitdiskret realisierten Bandpass.
8.4 Interpretation des Phasengangs eines Systems und linearer Phasengang

8.4.1 Phasengang eines Totzeitgliedes

Zur Verdeutlichung des Begriffes der Phase wird ein ideales Totzeitglied hinsichtlich seines Phasengangs analysiert. Unter der Annahme, dass die Totzeit ein Vielfaches der Abtastzeit T_A ist, hat das ideale Totzeitglied die Impulsantwort

$$g[k] = \delta[k - k_0]$$ \hspace{1cm} (8.64)

Eine am Eingang angelegte Signalfolge bleibt in ihrer Form vollständig erhalten, sie wird lediglich um k_0 nach rechts verschoben. Der Frequenzgang des idealen Totzeitglieds ergibt sich aus

$$G(\Omega) = e^{-j\Omega k_0}$$ \hspace{1cm} (8.65)

Er hat den Betrag von 1 und eine Phase von

$$\varphi(\Omega) = -\Omega \cdot k_0$$ \hspace{1cm} (8.66)

Die Phase φ ist eine lineare Funktion der normierten Kreisfrequenz Ω. Bild 8.11 zeigt den Phasengang und die Sprungantwort des idealen Totzeitgliedes.

Bild 8.11: Phasengang und Sprungantwort eines idealen Totzeitglieds mit $k_0 = 5$

Die Sprungantwort zeigt, dass sich die Signalform bei dem idealen Totzeitglied mit linearem Phasengang nicht ändert.
8.4.2 Anregung eines Systems mit harmonischen Signalen

\[u[k] = 5 \cdot \cos\left(\frac{2 \cdot \pi}{10} \cdot k\right) = 5 \cdot \cos(\Omega_0 \cdot k) \] \hspace{1cm} (8.67)

und

\[y[k] = 4 \cdot \cos\left(\frac{2 \cdot \pi}{10} (k-2)\right) = 4 \cdot \cos\left(\frac{2 \cdot \pi}{10} \cdot k - \frac{4 \cdot \pi}{10}\right) \]
\[= 4 \cdot \cos(\Omega_0 \cdot k + \phi) = 4 \cdot \cos(\Omega_0 \cdot (k-k_0)) \] \hspace{1cm} (8.68)

beschrieben werden. Die Phase \(\phi \) des Ausgangssignals kann über eine Verschiebung \(k_0 \) und der Frequenz \(\Omega_0 \) dargestellt werden als

\[\phi(\Omega) = -\Omega_0 \cdot k_0 \] \hspace{1cm} (8.69)

Bei der Anregung mit einer harmonischen Schwingung mit der Frequenz \(\Omega_0 \) ist für die Berechnung des Ausgangssignals nur der Frequenzgang des Systems an dieser Stelle \(\Omega_0 \) von Bedeutung. Deshalb hat eine Umrechnung der Zeitverschiebung \(k_0 \) mit der Frequenz im Fall einer harmonischen Anregung lediglich normierenden Charakter. Die Phase ist in dem Fall gleichbedeutend mit einer zeitlichen Verschiebung der harmonischen Funktion.

8.4.3 Anregung eines Systems mit zwei harmonischen Signalen unterschiedlicher Frequenz

Die Vorstellung der Phase als Maß für eine zeitliche Verschiebung wird am Beispiel zweier harmonischer Schwingungen weiter ausgebaut. Gegeben ist ein Signal, das aus der Summe zweier Folgen

\[u_i[k] = U_i \cdot \sin(\Omega_i \cdot k) \] \hspace{1cm} (8.70)

und
\[u_2[k] = U_2 \cdot \sin(\Omega_2 \cdot k) \]
\hspace{1cm} (8.71)

besteht. Das Signal durchläuft ein System mit dem Frequenzgang \(G(\Omega) \). Das Ausgangssignal ergibt sich aus der Summe der Folgen

\[y_1[k] = U_1 \cdot A(\Omega_1) \cdot \sin(\Omega_1 \cdot k + \varphi(\Omega_1)) \]
\hspace{1cm} (8.72)

und

\[y_2[k] = U_2 \cdot A(\Omega_2) \cdot \sin(\Omega_2 \cdot k + \varphi(\Omega_2)) \]
\hspace{1cm} (8.73)

Damit ein Signal dieselbe Form behält, müssen die Signalanteile unterschiedlicher Frequenz um die gleiche Zeit \(k_0 \) verzögert werden. Unter dieser Bedingung ergibt sich für die beiden Signale

\[y_1[k] = U_1 \cdot A(\Omega_1) \cdot \sin(\Omega_1 \cdot k + \varphi(\Omega_1)) = U_1 \cdot A(\Omega_1) \cdot \sin(\Omega_1 \cdot (k - k_0)) \]
\hspace{1cm} (8.74)

\[y_2[k] = X_2 \cdot A(\Omega_2) \cdot \sin(\Omega_2 \cdot k + \varphi(\Omega_2)) = X_2 \cdot A(\Omega_2) \cdot \sin(\Omega_2 \cdot (k - k_0)) \]
\hspace{1cm} (8.75)

und entsprechend für die beiden Phasen

\[\varphi(\Omega_1) = -k_0 \cdot \Omega_1 \]
\hspace{1cm} (8.76)

\[\varphi(\Omega_2) = -k_0 \cdot \Omega_2 \]
\hspace{1cm} (8.77)

Dieser Gedankengang zeigt, dass ein System mit linearer Phase Signale nur um eine konstante Zeit \(k_0 \) verschiebt. Eine Phasenverzerrung der Signale, bei der unterschiedliche Spektralbereiche unterschiedlich weit verschoben werden, findet nicht statt.

8.4.4 Gruppenlaufzeit eines Systems

\[T_g(\Omega) = -\frac{d\varphi}{d\Omega} \cdot T_\lambda \]
\hspace{1cm} (8.78)

Im Allgemeinen ist die Gruppenlaufzeit eines Systems eine Funktion der Frequenz \(\Omega \) und damit nicht konstant. Ist der Phasengang linear, ist seine Ableitung konstant. Damit ist auch die Gruppenlaufzeit des Systems konstant.
Beispiel: Rekursives Tiefpass-Filter

In Kapitel 8.1 wird der Frequenzgang des rekursiven Tiefpasses erster Ordnung berechnet.

\[G(\Omega) = \frac{1-GF}{1-GF \cdot e^{-j\Omega}} \]
(8.79)

Der Phasengang wird in Gleichung (8.32) berechnet zu

\[\varphi(\Omega) = -\arctan\left(\frac{GF \cdot \sin(\Omega)}{1-GF \cdot \cos(\Omega)} \right) \]
(8.80)

Die Ableitung nach \(\Omega \) führt zu der Gruppenlaufzeit von

\[T_G(\Omega) = \frac{d\varphi}{d\Omega} \cdot T_A = \frac{GF \cdot \cos(\Omega) - GF^2 \cdot \sin^2(\Omega)}{1 + \frac{GF^2 \cdot \sin^2(\Omega)}{(1-GF \cdot \cos(\Omega))^2}} \cdot T_A \]
(8.81)

\[= \frac{GF \cdot \cos(\Omega) - GF^2}{1 - 2 \cdot GF \cdot \cos(\Omega) + GF^3} \cdot T_A \]

Bild 8.13 zeigt die Gruppenlaufzeit eines rekursiven Filters 1. Ordnung für GF = 0.9 und eine Abtastzeit von T_A = 1 ms.

Bild 8.13: Gruppenlaufzeit eines rekursiven Filters (GF = 0.9, T_A = 1 ms)

Das Filter weist nur im Bereich kleiner Frequenzen \(\omega \ll \omega_A/2 \) eine konstante Gruppenlaufzeit auf, bei höheren Frequenzen ändert sich die Gruppenlaufzeit. Der in Bild 8.3 abgebildete Amplitudengang zeigt, dass es sich bei dem Filter um ein Tiefpassfilter handelt, das im niedrigen Frequenzbereich eine näherungsweise konstante Gruppenlaufzeit besitzt. Der Spektralbereich, der aufgrund der variablen Gruppenlaufzeit Phasenverzerrungen erfährt, wird gedämpft.
Beispiel: Totzeitglied

Das Totzeitglied besitzt nach Gleichung (8.69) einen Phasengang von

\[\varphi(\Omega) = -\Omega \cdot k_0 \quad (8.82) \]

und damit eine konstante Gruppenlaufzeit von

\[T_\varphi(\Omega) = -\frac{d}{d\Omega}(-\Omega \cdot k_0) \cdot T_A = k_0 \cdot T_A \quad (8.83) \]

Die konstante Gruppenlaufzeit führt auch bei der Anregung eines LTI-Systems mit zwei harmonischen Signalen unterschiedlicher Frequenz zu einer identischen Verzögerung der Signale.

8.4.5 Beispiele für FIR-Systeme mit linearer und nichtlinearer Phase

Das in Abschnitt 8.4.4 diskutierte rekursive Filter besitzt keinen linearen Phasengang. Es kann gezeigt werden, dass keine rekursiven Filter (IIR-Filter) realisiert werden können, die über einen großen Frequenzbereich eine lineare Phase beziehungsweise eine konstante Gruppenlaufzeit aufweisen. An zwei Beispielen wird gezeigt, dass FIR-Systeme unter noch zu definierenden Bedingungen einen linearen Phasengang haben.

FIR-System mit linearer Phase

Als Beispiel wird ein FIR-System mit der Übertragungsfunktion

\[
G(z) = \frac{1}{9} \cdot z^4 + 2 \cdot z^3 + 3 \cdot z^2 + 2 \cdot z + 1 = \frac{1}{9} + \frac{2}{9} z^{-1} + \frac{3}{9} z^{-2} + \frac{2}{9} z^{-3} + \frac{1}{9} z^{-4} \quad (8.84)
\]

diskutiert. Das System hat ausschließlich Pole im Koordinatenursprung und Nullstellen auf dem Einheitskreis. Die Impulsantwort ergibt sich mit der Verschiebungsregel zu

\[
g[k] = \frac{1}{9} \delta[k] + \frac{2}{9} \delta[k-1] + \frac{3}{9} \delta[k-2] + \frac{2}{9} \delta[k-3] + \frac{1}{9} \delta[k-4] \quad (8.85)
\]

8.4 Interpretation des Phasengangs eines Systems und linearer Phasengang

Das System weist ausschließlich Pole im Koordinatenursprung auf und ist damit stabil. Der Frequenzgang ergibt sich damit aus der Übertragungsfunktion $G(z)$ durch die Substitution $z = e^{j\Omega}$ zu

$$G_r(\Omega) = \frac{1}{9} + \frac{2}{9} e^{-j\Omega} + \frac{3}{9} e^{j2\Omega} + \frac{2}{9} e^{j3\Omega} + \frac{1}{9} e^{j4\Omega}$$ \hspace{0.1cm} (8.86)

Statt der Aufteilung in einzelne Linearfaktoren kann es bei FIR-Systemen vorteilhaft sein, den Frequenzgang $G(\Omega)$ durch Umformungen in Betrag und Phase aufzuteilen. Dazu wird die mittlere Verzögerung des Filters, im Beispiel dieses FIR-Systems $e^{j2\Omega}$, ausgeklammert und die dadurch symmetrisch werdenden Exponentialfunktionen mit der Eulerschen Formel als Winkelfunktionen ausgedrückt. Für das System ergibt sich

$$G_l(\Omega) = e^{j2\Omega} \left(\frac{1}{9} e^{j2\Omega} + \frac{2}{9} e^{j\Omega} + \frac{3}{9} e^{-j2\Omega} + \frac{2}{9} e^{-j3\Omega} + \frac{1}{9} e^{-j4\Omega} \right)$$ \hspace{0.1cm} (8.87)

Der Klammerausdruck ist für alle Frequenzen im Bereich $-\pi < \Omega < \pi$ größer als und hat demnach eine konstante Phase $\varphi = 0$. Da der Betrag der Exponentialfunktion mit imaginärem Argument eins ist, ergeben sich Amplituden- und Phasengang dieses FIR-Systems zu

$$A_r(\Omega) = \frac{2}{9} \cos(2\cdot\Omega) + \frac{4}{9} \cos(\Omega) + \frac{3}{9}$$ \hspace{0.1cm} (8.88)

beziehungsweise

$$\varphi_r(\Omega) = -2 \cdot \Omega$$ \hspace{0.1cm} (8.89)

Amplituden- und Phasengang sind in Bild 8.15 dargestellt.
Bei diesem FIR-System handelt es sich um ein Tiefpass-Filter mit einer linearen Phase.

FIR-System mit nichtlinearer Phase

Nicht jedes FIR-System ist ein System mit linearer Phase. Als Beispiel für ein System mit nichtlinearer Phase wird ein System diskutiert, das eine Übertragungsfunktion von

\[
G_2(z) = \frac{1}{6} \cdot \frac{3 \cdot z^2 + 2 \cdot z + 1}{z^2} = \frac{1}{6} \cdot (3 + 2 \cdot z^{-1} + z^{-2})
\]
(8.90)

besitzt. Wie jedes FIR-System hat auch dieses System ausschließlich Pole im Koordinatenursprung. Im Gegensatz zu dem ersten System liegen aber die Nullstellen nicht auf dem Einheitskreis, sondern im Inneren des Einheitskreises. Das System besitzt eine endliche Impulsantwort von

\[
g_2[k] = \frac{1}{6} \cdot (3 \cdot \delta[k] + 2 \cdot \delta[k-1] + \delta[k-2])
\]
(8.91)

Die Pol-Nullstellenverteilung des Systems sowie seine Impulsantwort sind in Bild 8.16 dargestellt.

Amplituden- und Phasengang ergeben sich nach den Rechenregeln zur Fourier-Transformation zu

\[
G_2(\Omega) = \frac{1}{6} \cdot (3 + 2 \cdot e^{-j\Omega} + e^{-j2\Omega})
\]
(8.92)

Bild 8.17: Amplituden- und Phasengang eines unsymmetrischen FIR-Filters

Offensichtlich existieren FIR-Systeme mit linearer und nichtlinearer Phase, sodass sich die Frage stellt, wann ein System die Forderung nach linearer Phase erfüllt.

8.4.6 Bedingung für eine lineare Phase

In Abschnitt 8.3.2 wird der Frequenzgang zeitdiskreter Systeme mit gebrochen rationaler Übertragungsfunktion diskutiert. Er setzt sich aus den Frequenzgängen einzelner Linearfaktoren zusammen. Liegen die Nullstellen dieser Linearfaktoren auf dem Einheitskreis, sind die zugehörigen Phasengänge linear zur Frequenz Ω. Frequenzgänge von FIR-Systemen weisen demnach einen linearen Phasengang auf, wenn sich alle Nullstellen der Übertragungsfunktion auf dem Einheitskreis befinden.

Alle vier Varianten werden im Folgenden analysiert. Es wird sich zeigen, dass sie alle einen linearen Phasengang aufweisen.

FIR-Systeme gerader Ordnung mit achsensymmetrischer Impulsantwort

Im Fall einer geraden Filterordnung N und einer achsensymmetrischen Impulsantwort gilt die Beziehung

$$g_1[k] = g_1[N-k]$$ \hspace{1cm} (8.93)

Für Filter mit endlicher Impulsantwort ergibt sich die Übertragungsfunktion direkt aus der Impulsantwort zu

$$G_1(z) = \sum_{k=0}^{N} g_1[k] \cdot z^k = \sum_{k=0}^{N/2-1} g_1[k] \cdot z^k + g_1[N/2] \cdot z^{-N/2} + \sum_{k=N/2+1}^{N} g_1[k] \cdot z^{-k}$$

$$= g_1[N/2] \cdot z^{-N/2} + \sum_{k=0}^{N/2-1} g_1[k] \cdot (z^k + z^{-(N-k)})$$

$$= z^{-N/2} \left(g_1[N/2] + \sum_{k=0}^{N/2-1} g_1[k] \cdot (z^{N/2-k} + z^{-(N/2-k)}) \right)$$ \hspace{1cm} (8.94)

Aufgrund der Stabilität von FIR-System ergibt sich der Frequenzgang durch die Substitution $z = e^{j\Omega}$ zu
8.4 Interpretation des Phasengangs eines Systems und linearer Phasengang

\[G_1(\Omega) = e^{-j\frac{\Omega N}{2}} \left(g_0[N/2] + \sum_{k=0}^{N/2-1} g_k[k] \left(e^{-j\frac{\Omega(N-2k)}{2}} + e^{j\frac{\Omega(N-2k)}{2}} \right) \right) \]
\[= e^{-j\frac{\Omega N}{2}} \left(g_0[N/2] + 2 \sum_{k=0}^{N/2-1} g_k[k] \cos \left(\frac{\Omega(N-2k)}{2} \right) \right) \quad (8.95) \]

Der zweite Faktor in Gleichung (8.95) ist reell und kann positive und negative Werte annehmen. Da er stetig in \(\Omega \) ist, weist er im Punkt seines Vorzeichenwechsels einen Betrag von null auf. Damit besitzt die Frequenzgang \(G_1(\Omega) \) eine abschnittweise lineare Phase, die bei Vorzeichenwechseln des Frequenzgangs um \(\pi \) springt. An diesen Stellen ist aber der Betrag der Übertragungsfunktion null. Das Filter weist damit im gesamten Durchlassbereich eine lineare Phase auf. Als Beispiel wird das in Bild 8.18 als \(g_1[k] \) bezeichnete Filter mit der Impulsantwort

\[g_k[k] = \frac{1}{3} \cdot (\delta[k] + 2 \cdot \delta[k-1] + 3 \cdot \delta[k-2] + 2 \cdot \delta[k-3] + \delta[k-4]) \quad (8.96) \]

betrachtet. Bild 8.19 stellt Amplituden- und Phasengang des Filters dar.

Bild 8.19: Amplituden- und Phasengang eines FIR-Filters mit gerader Ordnung
und achssensymmetrischer Impulsantwort

Da der Frequenzgang reell ist und kein Vorzeichenwechsel stattfindet, ist der Phasengang im Bereich von \(-\pi \leq \Omega \leq \pi \) linear.

FIR-Systeme gerader Ordnung mit punktsymmetrischer Impulsantwort

Im Fall einer geraden Filterordnung \(N \) und einer punktsymmetrischen Impulsantwort gilt die Beziehung

\[g_k[k] = -g_k[N-k] \quad (8.97) \]

Die Übertragungsfunktion berechnet sich zu

\[G_2(z) = \sum_{k=0}^{N} g_k[k] \cdot z^{-k} = \sum_{k=0}^{N/2-1} g_k[k] \cdot z^{-k} + \sum_{k=N/2+1}^{N} g_k[k] \cdot z^{-k} = \sum_{k=0}^{N/2-1} g_k[k] \cdot \left(z^{-k} - z^{-N-k} \right) \]
\[= z^{-N/2} \left(\sum_{k=0}^{N/2-1} g_k[k] \cdot \left(z^{N/2-k} - z^{-(N/2+k)} \right) \right) \quad (8.98) \]

Der Frequenzgang ergibt sich durch die Substitution \(z = e^{j\Omega} \).
Der zweite Faktor in Gleichung (8.99) ist reell und kann positive und negative Werte annehmen. Damit besitzt der Frequenzgang $G_2(\Omega)$ eine abschnittsweise lineare Phase, die bei Vorzeichenwechseln des Frequenzgangs um π springt. Als Beispiel wird das in Bild 8.18 als $g_2[k]$ bezeichnete Filter mit der Impulsantwort

$$g_2[k] = \frac{1}{3} \left(\delta[k] + 2 \cdot \delta[k-1] - 2 \cdot \delta[k-3] - \delta[k-4] \right)$$

betrachtet. Bild 8.20 stellt Amplituden- und Phasengang des Filters dar.

Der Frequenzgang wird für $\Omega = 0$ zu null, und es findet ein Vorzeichenwechsel statt. Deshalb springt der Phasengang an dieser Stelle um π.

FIR-Systeme ungerader Ordnung mit achsensymmetrischer Impulsantwort

Im Fall einer ungeraden Filterordnung N und einer achsensymmetrischen Impulsantwort gilt die Beziehung

$$g_3[k] = g_3[N-k]$$

(8.101)

Die Übertragungsfunktion berechnet sich unter Berücksichtigung der Symmetriebedingung zu

$$G_3(z) = \sum_{k=0}^{N-1} g_3[k] \cdot z^{-k} = \sum_{k=0}^{(N-1)/2} g_3[k] \cdot z^{-k} + \sum_{k=(N+1)/2}^{N} g_3[k] \cdot z^{-k} = \sum_{k=0}^{(N-1)/2} g_3[k] \cdot \left(z^{-k} + z^{-(N-k)} \right)$$

(8.102)

Der Frequenzgang ergibt sich durch die Substitution $z = e^{i\Omega}$.

\[G_2(\Omega) = e^{-i\frac{\Omega N}{2}} \left(\sum_{k=0}^{N/2-1} g_2[k] \left(e^{i\frac{\Omega(N-2k)}{2}} - e^{-i\frac{\Omega(N-2k)}{2}} \right) \right) \]

\[= e^{-i\frac{\Omega N}{2}} \left(2 \cdot \sum_{k=0}^{N/2-1} g_2[k] \cdot \sin \left(\frac{\Omega(N-2k)}{2} \right) \right) \]

\[= e^{-i\frac{\Omega N}{2}} \left(2 \cdot \sum_{k=0}^{N/2-1} g_2[k] \cdot \sin \left(\frac{\Omega(N-2k)}{2} \right) \right) \]

(8.99)
8.4 Interpretation des Phasengangs eines Systems und linearer Phasengang

\[G_3(\Omega) = e^{-\frac{\Omega N}{2}} \cdot \left(\sum_{k=0}^{(N-1)/2} g_3[k] \cdot \left(e^{-\frac{\Omega (N-2k)}{2}} + e^{-\frac{\Omega (N-2k)}{2}} \right) \right) \]
\[= e^{-\frac{\Omega N}{2}} \cdot \left(2 \cdot \sum_{k=0}^{(N-1)/2} g_3[k] \cdot \cos \left(\frac{\Omega \cdot (N-2k)}{2} \right) \right) \]
\[= e^{-\frac{\Omega N}{2}} \cdot \left(2 \cdot \sum_{k=0}^{(N-1)/2} g_3[k] \cdot \cos \left(\frac{\Omega \cdot (N-2k)}{2} \right) \right) \]
(8.103)

Der zweite Faktor in Gleichung (8.103) ist reell und kann positive und negative Werte annehmen. Damit besitzt der Frequenzgang \(G_3(\Omega) \) eine abschnittweise lineare Phase, die an einigen Stellen um \(\pi \) springt. Als Beispiel wird das in Bild 8.18 als \(g_3[k] \) bezeichnete Filter mit der Impulsantwort
\[g_3[k] = \frac{1}{3} \cdot (\delta[k] + 2 \cdot \delta[k-1] + 3 \cdot \delta[k-2] + 3 \cdot \delta[k-3] + 2 \cdot \delta[k-4] + \delta[k-5]) \]
(8.104)
betrachtet. Bild 8.21 stellt Amplituden- und Phasengang des Filters dar.

Bild 8.21: Amplituden- und Phasengang eines FIR-Filters mit ungerader Ordnung und achsensymmetrischer Impulsantwort

FIR-Systeme ungerader Ordnung mit punktsymmetrischer Impulsantwort

Im Fall einer ungeraden Filterordnung \(N \) und einer punktsymmetrischen Impulsantwort gilt die Beziehung
\[g_x[k] = -g_x[N-k] \]
(8.105)

Die Übertragungsfunktion berechnet sich unter Berücksichtigung der Symmetriebedingung zu
\[G_x(z) = \sum_{k=0}^{N} g_x[k] \cdot z^{-k} = \sum_{k=0}^{(N-1)/2} g_x[k] \cdot z^{-k} - \sum_{k=(N-1)/2}^{N} g_x[k] \cdot z^{-k} = \sum_{k=0}^{(N-1)/2} g_x[k] \cdot (z^{-k} - z^{-(N-k)}) \]
(8.106)

Der Frequenzgang ergibt sich durch die Substitution \(z = e^{j\Omega} \).
\[G_4(\Omega) = e^{-j \frac{\Omega N}{2}} \cdot \left(\sum_{k=0}^{(N-1)/2} g_4[k] \cdot \left(e^{\frac{\Omega(N-2k)}{2}} - e^{-\frac{\Omega(N-2k)}{2}} \right) \right) \]

\[= e^{-j \frac{\Omega N}{2}} \cdot \left(2 \cdot j \cdot \sum_{k=0}^{(N-1)/2} g_4[k] \cdot \sin \left(\frac{\Omega \cdot (N-2k)}{2} \right) \right) \]

\[= e^{-j \frac{\Omega N}{2}} \cdot \left(2 \cdot \sum_{k=0}^{(N-1)/2} g_4[k] \cdot \sin \left(\frac{\Omega \cdot (N-2k)}{2} \right) \right) \quad (8.107) \]

Der zweite Faktor in Gleichung (8.108) ist reell und kann positive und negative Werte annehmen. Damit besitzt der Frequenzgang \(G_4(\Omega) \) eine abschnittsweise lineare Phase, die an einigen Stellen um \(\pi \) springt. Als Beispiel wird das das in Bild 8.18 als \(g_4[k] \) bezeichnete Filter mit der Impulsantwort

\[g_4[k] = \frac{1}{3} \cdot (\delta[k] + 2 \cdot \delta[k-1] + 3 \cdot \delta[k-2] - 3 \cdot \delta[k-3] - 2 \cdot \delta[k-4] - \delta[k-5]) \quad (8.108) \]

betrachtet. Bild 8.22 stellt Amplituden- und Phasengang des Filters dar.

Zusammenfassung FIR-Systeme mit linearer Phase

Tabelle 8.1 fasst die Bedingungen zusammen, unter denen FIR-Systeme eine lineare Phase aufweisen.

<table>
<thead>
<tr>
<th>Kriterium</th>
<th>Bedingung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lage der Nullstellen im</td>
<td>Alle Nullstellen auf dem Einheitskreis</td>
</tr>
<tr>
<td>Pol-Nullstellen-Diagramm</td>
<td></td>
</tr>
<tr>
<td>Symmetrie der Impulsantwort</td>
<td>Fel-Systeme gerader Ordnung mit achsensymmetrischer Impulsantwort (g[k] = g[N-k])</td>
</tr>
<tr>
<td></td>
<td>Fel-Systeme gerader Ordnung mit punktsymmetrischer Impulsantwort (g[k] = -g[N-k])</td>
</tr>
<tr>
<td></td>
<td>Fel-Systeme ungerader Ordnung mit achsensymmetrischer Impulsantwort (g[k] = g[N-k])</td>
</tr>
<tr>
<td></td>
<td>Fel-Systeme ungerader Ordnung mit punktsymmetrischer Impulsantwort (g_k = g_k[N-k])</td>
</tr>
</tbody>
</table>
8.4.7 Vergleich von Tiefpassfiltern mit linearer und nichtlinearer Phase

Die Diskussion der Beispiele im letzten Abschnitt zeigt, dass Systeme mit linearem Phasengang Eingangssignale zwar verzögern, jedoch nicht in ihrer Form verzerren. Im Folgenden wird analysiert, welcher Unterschied zwischen zwei Tiefpass-Filtern besteht, die eine lineare beziehungsweise eine nichtlineare Phase besitzen. Das Filter mit linearer Phase wird als FIR-Filter realisiert, das Filter mit nichtlinearer Phase als IIR-Filter. Beide Filter werden so entworfen, dass sie bei einer Frequenz von $\Omega = \pi/5$ eine Dämpfung von maximal 1 dB aufweisen und bei einer Frequenz von $\Omega = 1.1\pi/5$ eine Dämpfung von mindestens 80 dB besitzen. Die Forderung führt bewusst zu Filtern hoher Ordnung, an denen die Unterschiede zwischen linearem und nichtlinearer Phasengang deutlich zu erkennen sind. Amplituden- und Phasengang der beiden Filter sind in Bild 8.23 dargestellt.

Die Amplitudengänge sind im Durchlassbereich bis $\Omega = \pi/5$ praktisch identisch und weisen im Sperrbereich eine Dämpfung von mehr als 80 dB auf. Die Phasengänge weichen stark voneinander ab. Das FIR-Filter hat einen linearen Phasenverlauf, dem an den Nullstellen des Amplitudengangs zusätzlich Phasensprünge überlagert sind. Im Gegensatz dazu hat das IIR-Filter einen nichtlinearen Phasenverlauf, dem ebenfalls Phasensprünge überlagert sind. Auch die Absolutwerte der Phase sind stark unterschiedlich.

Zunächst wird analysiert, wie zwei Wellenpakete mit unterschiedlicher Frequenz $\Omega_1 = \pi/10$ und $\Omega_2 = \pi/5$ das Filter durchlaufen. Bild 8.24 zeigt die Systemreaktion der Tiefpass-Filter auf die Anregung.

$$\frac{T_c}{T_A} = k_o = \frac{K}{2} = 125.5$$

(8.109)

Bild 8.25 zeigt die Systemreaktion des FIR- und IIR-Filters auf die Anregung mit Rechteckfolgen.
Deutlich zu erkennen sind die größere Gruppenlaufzeit und die geringeren Verzerrungen des FIR-Filter mit linearer Phase. Das IIR-Filter mit nichtlinearer Phase besitzt eine kürzere Gruppenlaufzeit, aber das Ausgangssignal ist stärker verzerrt. Da sich ein Signal im allgemeinen Fall aus vielen Spektralanteilen zusammensetzt, ist für die verzerrungsarme Übertragung ein Filter mit linearer Phase im Durchlassbereich notwendig.

Aus diesen Überlegungen ergeben sich zwei Forderungen an zeitdiskrete Filter. Sie müssen eine minimale Verzögerung besitzen und im Durchlassbereich einen zumindest näherungsweise linearen Phasengang aufweisen.
8.5 Allpässe und minimalphasige Systeme

In den Abschnitten 8.3 und 8.4 wird die Bedeutung der Phase eines Systems diskutiert. Es zeigt sich, dass eine große Phase einer großen Zeitverzögerung entspricht und umgekehrt. In der Regelungstechnik und Signalverarbeitung ist es gewünscht, das Ausgangssignal mit einer möglichst kleinen Verzögerung auszugeben. Das entsprechende System muss dazu eine minimale Phase aufweisen.

Manche Systeme sind nicht minimalphasig, können aber in einen minimalphasigen Anteil und einen Allpass zerlegt werden.

8.5.1 Minimalphasige Systeme

Zur Veranschaulichung des Begriffes der Minimalphasigkeit werden zwei Systeme miteinander verglichen, die denselben Amplitudengang aber einen unterschiedlichen Phasengang besitzen. Sie haben die Übertragungsfunktionen

\[
G_1(z) = \frac{(z-2 \cdot j) \cdot (z+2 \cdot j)}{z^2} = \frac{z^2 + 4}{z^2}
\]
(8.110)

und

\[
G_2(z) = 8 \cdot \frac{(z-0.5 \cdot j) \cdot (z+0.5 \cdot j)}{z^2} = 4 \cdot \frac{z^2 + 0.25}{z^2}
\]
(8.111)

Ihre Pol-Nullstellen-Diagramme sind in Bild 8.26, Amplituden- und Phasengänge sind in Bild 8.27 dargestellt.
8.5 Allpässe und minimalphasige Systeme

Die Systeme haben denselben Amplitudengang $A(\Omega)$. Ihre Phasengänge $\phi(\Omega)$ unterscheiden sich jedoch erheblich. Die unterschiedlichen Phasengänge führen erwartungsgemäß zu unterschiedlichen Signalverzögerungen, die zum Beispiel an den beiden Sprungantworten in abgelesen werden können.

Das in diesem Beispiel dargestellte Verhalten kann verallgemeinert werden. Es kann gezeigt werden, dass Systeme, die ausschließlich Nullstellen innerhalb des Einheitskreises besitzen, eine minimale Phase aufweisen. Sie werden als minimalphasige Systeme bezeichnet.

Die Forderung nach Nullstellen innerhalb des Einheitskreises entspricht der Forderung nach Invertierbarkeit, sodass alle invertierbaren Systeme eine minimale Phase aufweisen und alle minimalphasigen Systeme invertierbar sind.
8.5.2 Allpässe

Übertragungsglieder, die Spektralanteile aller Frequenzen mit dem gleichen Betrag übertragen, werden als Allpass bezeichnet. Sie weisen einen Amplitudengang von

\[A(\Omega) = |G(\Omega)| = 1 \]

auf. Ein Beispiel für einen Allpass ist ein System mit einer Verzögerung um \(k_0 \).

\[G(\Omega) = e^{-j k_0 \Omega} \]

(8.113)

Der Frequenzgang des Systems mit zeitlicher Verzögerung hat einen konstanten Betrag von \(A(\Omega) = 1 \) und eine Phase von \(\phi(\Omega) = -k_0 \Omega \). Allpässe wirken sich damit nur auf die Phase des Eingangssignals aus. Allpässe mit gebrochen rationalen Übertragungsfunktionen besitzen Nullstellen außerhalb des Einheitskreises. Sie haben die Struktur

\[G(z) = \frac{z^{-1} - \alpha^*}{1 - \alpha^* z^{-1}} = \frac{1 - \alpha^* z}{z - \alpha} \]

(8.114)

Beim Allpass gehört zu jedem Pol innerhalb des Einheitskreises eine Nullstelle außerhalb des Einheitskreises mit gleicher Phase \(\Omega_0 \) und reziprochem Betrag \(1/r_0 \). Sämtliche Nullstellen eines stabilen Allpass liegen außerhalb des Einheitskreises. Bild 8.29 stellt die Lage des Pols und der Nullstelle an einem Beispiel dar.

![Bild 8.29: Lage von Pol und Nullstelle eines Allpasses erster Ordnung](image)

Der Frequenzgang ergibt sich mit

\[\alpha = r_0 \cdot e^{j \alpha_0} \]

(8.115)

zu

\[G(\Omega) = \frac{e^{-j \Omega} - r_0 \cdot e^{-j \alpha_0}}{1 - r_0 \cdot e^{j \alpha_0} \cdot e^{-j \Omega}} = e^{-j \Omega} \cdot \frac{1 - r_0 \cdot e^{j(\Omega - \alpha_0)}}{1 - r_0 \cdot e^{-j(\alpha - \alpha_0)}} \]

(8.116)

Zähler und Nenner des Frequenzgangs sind konjugiert komplex zueinander, sie haben demnach denselben Betrag. Die Exponentialfunktion mit imaginärem Argument hat ebenfalls den Betrag 1. Der Amplitudengang \(A(\Omega) \) hat damit den konstanten Betrag von \(A = 1 \). Der Phasengang ergibt sich zu
\[
\varphi(\Omega) = -\Omega + \arctan \left(\frac{r_0 \cdot \sin(\Omega_0 - \Omega)}{1 - r_0 \cdot \cos(\Omega_0 - \Omega)} \right) - \arctan \left(\frac{-r_0 \cdot \sin(\Omega_0 - \Omega)}{1 - r_0 \cdot \cos(\Omega_0 - \Omega)} \right)
\]
\[
= -\Omega + 2 \cdot \arctan \left(\frac{r_0 \cdot \sin(\Omega_0 - \Omega)}{1 - r_0 \cdot \cos(\Omega_0 - \Omega)} \right)
\]

Amplitudengang und Phasengang des Allpasses mit Pol- und Nullstelle aus Bild 8.29 sind in Bild 8.30 dargestellt.

Bild 8.30 zeigt, dass Allpässe nur die Phasenlage verändern und die Amplituden unverändert lassen.

8.5.3 Transformation nicht minimalphasiger Systeme in minimalphasige Systeme

Minimalphasige Systeme weisen gegenüber nicht minimalphasigen Systemen die Vorteile der geringen Verzögerung und Invertierbarkeit auf. Aus diesem Grund wird versucht, nicht minimalphasige Systeme in minimalphasige Systeme zu überführen.

Zur Transformation wird das System mit einem Allpass erweitert, der die Nullstellen außerhalb des Einheitskreises kompensiert und durch Nullstellen im Einheitskreis ersetzt. Weist ein System \(G(z) \) außerhalb des Einheitskreises die Nullstellen \(\beta_1 \ldots \beta_M \) auf, wird das System mit den Allpässen

\[
G_\text{A}(z) = \prod_{m=1}^{M} \frac{z^{-1} - \beta_m^*}{1 - \beta_m^* z^{-1}} = \prod_{i=1}^{M} \frac{1 - \beta_m z}{z - \beta_m}
\]

gefiltert. Da die Nullstellen außerhalb des Einheitskreises durch die Pole der Allpässe kompensiert werden, besitzt das System \(G_\text{M}(z) \)

\[
G_\text{M}(z) = G(z) \cdot G_\text{A}(z)
\]

lediglich Nullstellen, die innerhalb des Einheitskreises liegen. Das System \(G_\text{M}(z) \) ist damit minimalphasig.

Beispiel: Minimalphasiges FIR-Filter

Als Beispiel wird ein FIR-Filter mit der Übertragungsfunktion

\[G(z) = \frac{(z - 2) \cdot (2 \cdot z + 1) \cdot (z^2 - 2 \cdot z + 2)}{z^4} \]

(8.120)

diskutiert. Es hat Nullstellen bei \(\beta_1 = 2 \) und \(\beta_2 = -1/2 \). Die beiden anderen Nullstellen berechnen sich aus

\[\beta_{3,4} = -\frac{2}{2} \pm \sqrt{1 - 2} = 1 \pm j = \sqrt{2} \cdot e^{j\pi/2} \]

Damit das System minimalphasig wird, müssen alle Nullstellen innerhalb des Einheitskreises liegen. Dazu wird die Übertragungsfunktion mit der Übertragungsfunktion der Allpässe

\[G_\alpha(z) = \frac{1 - 2 \cdot z - 1 - \sqrt{2} \cdot e^{-j\pi/4} \cdot z}{z - \sqrt{2} \cdot e^{-j\pi/4}} \cdot \frac{1 - \sqrt{2} \cdot e^{j\pi/4} \cdot z}{z - \sqrt{2} \cdot e^{j\pi/4}} = \frac{(1 - 2 \cdot z) \cdot (1 - 2 \cdot z - 2 \cdot z^2)}{(z - 2) \cdot (z^2 - 2 \cdot z + 2)} \]

(8.121)

multipliziert.

\[G_\mu(z) = \frac{(z - 2) \cdot (2 \cdot z + 1) \cdot (z^2 - 2 \cdot z + 2)}{z^4} \cdot \frac{(1 - 2 \cdot z) \cdot (1 - 2 \cdot z - 2 \cdot z^2)}{(z - 2) \cdot (z^2 - 2 \cdot z + 2)} \]

(8.122)

Das minimalphasige System \(G_\mu(z) \) besitzt die Nullstellen bei \(\beta_{1,2} = \pm 1/2 \) und an den Stellen \(\beta_{3,4} = 1/2 \pm j/2 \). Alle Nullstellen liegen innerhalb des Einheitskreises.

Der Umgang mit minimalphasigen Systemen wird im Rahmen der Übungsaufgaben wieder aufgegriffen.
8.6 Literatur

8.6.1 Literaturstellen mit besonders anschaulicher Darstellung

8.6.2 Literaturstellen mit praktischen Anwendungen

8.6.3 Literatur zu MATLAB

[Schw07] Schweizer, Wolfgang: MATLAB kompakt, Oldenbourg Verlag München, 2007

8.6.4 Weiterführende Literatur

8.6.5 Literatur zum Projekt

[]
8.7 Übungsaufgaben – Frequenzgang zeitdiskreter Systeme

8.7.1 Frequenzgang zeitdiskreter Systeme

a) Gegeben ist ein System G₁ mit folgender Differenzengleichung.

\[y_1[k] = \frac{u_1[k]+u_1[k-1]+u_1[k-2]}{3} \]

Zeigen Sie, dass die Differenzengleichung mit dem Frequenzgang \(G₁(Ω) \) übereinstimmt.

\[G₁(Ω) = \frac{1}{3} \left(1 + e^{-jΩ} + e^{-j2Ω} \right) \]

Zeichnen sie für das System G₁ Amplituden- und Phasengang im Bereich von \(-π < Ω < π\).

b) Gegeben ist ein System G₂ mit folgender Differenzengleichung.

\[y_2[k+1] + 0.9 \cdot y_2[k] = 1.9 \cdot u_1[k+1] \]

Zeigen Sie, dass das System folgende Impulsantwort besitzt

\[g_2[k] = 1.9 \cdot (-0.9)^k \cdot σ[k] \]

Berechnen Sie den Frequenzgang \(G₂(Ω) \) und zeichnen sie Amplituden- und Phasengang im Bereich

von \(-π < Ω < π\).

8.7.2 Analyse eines Filters

Gegeben ist ein Filter mit der Übertragungsfunktion \(G(z) \).

\[G(z) = \frac{4 \cdot z - 1}{4 \cdot z + 1} \]

a) Welche Verstärkung besitzt das Filter? Ist das System stabil?

b) Berechnen Sie den Frequenzgang \(G(Ω) \) und Amplitudengang \(A(Ω) \) des Filters.

c) Skizzieren Sie den Amplitudengang des Filters. Um welchen Filtertyp handelt es sich?

d) Geben Sie eine Differenzengleichung zur Realisierung des Filters an.

8.7.3 Transformation des Frequenzgangs

Ein LTI-System mit der Impulsantwort \(g₁[k] \) ist ein ideales Tiefpassfilter mit der Grenzfrequenz \(Ω₀ = π/2\). Der Frequenzgang des Systems ist \(G₁(Ω) \).

Berechnen Sie den Frequenzgang \(G₂(Ω) \) des Systems, das mit der Differenzengleichung

\[g₂[k] = (-1)^k \cdot g₁[k] \]

beschrieben wird und skizzieren Sie den Amplitudengang beider Systeme.
8.7.4 Interpretation von Übertragungsfunktionen

Gegeben sind zwei kausale, lineare zeitinvariante Systeme mit den Systemfunktionen

\[
G(z) = \frac{z^{-1} \left(1 - \frac{1}{3} z^{-1}\right)}{\left(1 + j \frac{1}{2} z^{-1}\right) \cdot \left(1 - j \frac{1}{2} z^{-1}\right)}
\]

a) Geben Sie die Differenzengleichung an, die den Zusammenhang zwischen Aus- und Eingang beschreibt.

b) Zeichnen Sie das Pol-Nullstellen-Diagramm.

c) Skizzieren Sie den Betrag von \(G(\Omega)\).

8.7.5 Interpretation eines Pol-Nullstellen-Diagramms

Die Systemfunktion \(G(z)\) eines linearen zeitinvarianten Systems besitzt das unten dargestellte Pol-Nullstellen-Diagramm. Außerdem weist die Sprungantwort \(h[k]\) für \(k \to \infty\) Grenzwert 6 auf.

a) Bestimmen Sie \(G(z)\).

b) Geben Sie die Sprungantwort \(h[k]\) des Systems an.

c) Ermitteln Sie die Antwort auf die Eingangsfolge

\[
u[k] = \sigma[k] - \frac{1}{2} \cdot \sigma[k-1]
\]

d) Bestimmen Sie den Frequenzgang.

8.7.6 Fourier-Transformierte eines Systems

Gegeben Sie die Differenzengleichung eines Systems an, das Fourier-Transformation \(G(\Omega)\) besitzt.

\[
G(\Omega) = \frac{1}{1 - \frac{1}{2} e^{-j\Omega}}
\]
8.7.7 Filtervergleich

Ein zeitdiskretes Filter besitzt die Impulsantwort $g_1[k]$ mit $0 < a < 1$

$$g_1[k] = a^k \cdot \sigma[k]$$

a) Berechnen Sie die Übertragungsfunktion $G_1(z)$ des Systems.

b) Berechnen Sie die Pole der Übertragungsfunktion $G_1(z)$. Welche Systemeigenschaften lassen sich an der Übertragungsfunktion ablesen? Begründen Sie Ihre Antwort.

c) Berechnen Sie den Frequenzgang $G_1(\Omega)$.

Ein anderes zeitdiskretes Filter mit derselben Konstante a besitzt die Impulsantwort $g_2[k]$

$$g_2[k] = a^k \cdot (\sigma[k] - \sigma[k - 7])$$

d) Berechnen Sie die Übertragungsfunktion $G_2(z)$ des Systems.

e) Berechnen Sie die Pole der Übertragungsfunktion $G_2(z)$. Welche Systemeigenschaften lassen sich an der Übertragungsfunktion ablesen? Begründen Sie Ihre Antwort.

f) Berechnen Sie den Frequenzgang $G_2(\Omega)$.

g) Welcher Zusammenhang gilt zwischen den beiden Frequenzgängen? Welche Bedingung muss für die Konstante a gelten, damit die beiden Frequenzgänge $G_1(\Omega)$ und $G_2(\Omega)$ der Filter einen identischen Verlauf aufweisen? Begründen Sie Ihre Antwort.

h) Diskutieren Sie Vor- und Nachteile der Filter $G_1(z)$ und $G_2(z)$.

8.7.8 Eigenschaften eines FIR-Filters

Gegen ist die Impulsantwort eines FIR-Filters, die in der folgenden Tabelle dargestellt ist.

<table>
<thead>
<tr>
<th>k</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>$g[k]$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

a) Ist das FIR-Filter kausal.

b) Ist das FIR-Filter stabil?

c) Besitzt das Filter eine lineare Phase?
8.7 Übungsaufgaben – Frequenzgang zeitdiskreter Systeme

8.7.9 Vorwärts- und Rückwärtsprädiktor
Bei der Audio- und Videocodierung werden Rückwärtsprädiktoren mit der Differenzengleichung
\[y_R[k] = u[k] - a_R \cdot y_R[k-1] \]
und Vorwärtsprädiktoren mit der Differenzengleichung
\[y_V[k] = u[k] + a_V \cdot x[k-1] \]
in Reihe geschaltet.

a) Geben Sie die Impulsantwort allgemein für jeden Prädiktor an.
b) Bestimmen Sie den Frequenzgang für jeden Prädiktor.
c) Bestimmen Sie den Frequenzgang der Reihenschaltung.
d) Wie sind die Variablen \(a_R \) und \(a_V \) zu wählen, dass \(y[k] = u[k] \) für \(k \to \infty \) ist.
e) Zeigen Sie, dass der Rückwärtsprädiktor für \(0 < a_R < 1 \) Tiefpassverhalten aufweist. Wie kann der Frequenzgang des Vorwärtsprädiktor charakterisiert werden?

8.7.10 Transformation eines Filters in ein minimalphasiges Filter
Gegeben ist ein FIR-Filter mit der Übertragungsfunktion \(G(z) \), das folgende Impulsantwort besitzt.

\[\begin{align*}
\begin{array}{c|c|c|c}
Folgenindex k & \text{Impulsantwort } g[k] \\
\hline
-2 & 0 & 2 & 4 & 6 \\
0 & 0 & 2 & 4 & 6 \\
2 & 0 & 2 & 4 & 6 \\
4 & 0 & 2 & 4 & 6 \\
6 & 0 & 2 & 4 & 6 \\
\end{array}
\end{align*} \]

Das Filter soll in einen minimalphasigen Filter \(G_M(z) \) überführt werden, das denselben Amplitudengang besitzt wie \(G(z) \).

8.7.11 Synthese eines minimalphasigen Filters
Gegeben ist ein FIR-Filter mit der Übertragungsfunktion \(G(z) \), das die Pole \(\alpha_{1,2} = 0.5 \pm 0.5 \) und die Nullstellen \(\beta_{1,2} = 2 \pm j\cdot2 \) besitzt. Das System soll eine Verstärkung von 1 aufweisen.
a) Berechnen Sie Übertragungsfunktion des Systems.
b) Ist das Filter ein IIR- oder FIR-Filter?
c) Das Filter ist nicht minimalphasig. Bestimmen Sie die Übertragungsfunktion des zugehörigen minimalphasigen Filters.
8.8 Musterlösung – Frequenzgang zeitdiskreter Systeme

8.8.1 Frequenzgang zeitdiskreter Systeme

a) Die Differenzengleichung kann umgestellt werden zu
\[3 \cdot y[k] = u_1[k] + u_1[k-1] + u_1[k-2] \]

Die z-Transformierte ergibt sich mit Linearitäts- und Verschiebungsregel zu
\[Y_1(z) \cdot 3 = U_1(z) + U_1(z) \cdot z^{-1} + U_1(z) \cdot z^{-2} \]

Damit lautet die Übertragungsfunktion im z-Bereich
\[G_1(z) = \frac{Y_1(z)}{U_1(z)} = \frac{1 + z^{-1} + z^{-2}}{3} = \frac{z^2 + z + 1}{3 \cdot z^2} \]

Die Übertragungsfunktion hat nur Pole im Koordinatenursprung, das System ist stabil mit der Substitution \(z = e^{j\Omega} \) ergibt sich der Frequenzgang
\[G_1(\Omega) = \frac{Y_1(\Omega)}{U_1(\Omega)} = \frac{1 + e^{-j\Omega} + e^{-j2\Omega}}{3} = \frac{e^{-j\Omega} + 1 + e^{j\Omega}}{3} = \frac{1 + 2 \cos(\Omega)}{3} \]

Amplituden- und Phasengang sind in folgender Grafik dargestellt.

Dabei ergibt sich der Phasensprung durch den Vorzeichenwechsel im Nenner des zweiten Faktors.

b) Die Differenzengleichung um einen Takt verschoben werden.
\[y_2[k] + 0.9 \cdot y_2[k-1] = 1.9 \cdot u_2[k] \]

Dann ergibt sich die z-Transformierte der Gleichung
\[Y_2(z) \cdot z + 0.9 \cdot Y_2(z) = 1.9 \cdot U_2(z) \cdot z \]

und die Übertragungsfunktion lautet
\[G_2(z) = \frac{Y_2(z)}{U_2(z)} = \frac{1.9 \cdot z}{z + 0.9} \]

Aus der Korrespondenztabel kann die Impulsantwort direkt angelesen werden zu
\[g_2[k] = 1.9 \cdot (-0.9)^k \cdot \sigma[k] \]
Die Übertragungsfunktion hat nur Pole innerhalb des Einheitskreises, das System ist damit stabil. Mit der Substitution \(z = e^{j\Omega} \) ergibt sich der Frequenzgang

\[
G_z(\Omega) = \frac{1.9 \cdot e^{j\Omega}}{e^{j\Omega} + 0.9} = \frac{1.9 \cdot \cos(\Omega) + 1.9 \cdot j \cdot \sin(\Omega)}{\cos(\Omega) + j \cdot \sin(\Omega) + 0.9}
\]

Der Betrag entspricht dem Amplitudengang

\[
A(\Omega) = \frac{3.61}{\sqrt{(\cos(\Omega) + 0.9)^2 + \sin^2(\Omega)}} = \frac{3.61}{\sqrt{\cos^2(\Omega) + 1.8 \cdot \cos(\Omega) + 0.81 + \sin^2(\Omega)}} = \frac{1.9}{\sqrt{1.8 \cdot \cos(\Omega) + 1.81}}
\]

Die Phase errechnet sich aus der Phase des Zählers abzüglich der Phase des Nenners

\[
\varphi_z(\Omega) = \Omega - \arctan\left(\frac{\sin(\Omega)}{0.9 + \cos(\Omega)} \right)
\]

Amplitudengang und Phasengang sind in folgender Grafik dargestellt.

8.8.2 Analyse eines Filters

a) Die Verstärkung des Systems ergibt sich aus der Übertragungsfunktion zu

\[
G(z) = \frac{4 \cdot 1 - 1}{4 \cdot 1 + 1} = \frac{3}{5}
\]

Zur Untersuchung der Stabilität werden die Pole des Systems berechnet.

\[4 \cdot z + 1 = 0\]

Das System hat einen Pol an der Stelle \(z = -\frac{1}{4} \). Da der Pol innerhalb des Einheitskreises liegt, ist das System ein stabiles System.

b) Bei einem stabilen zeitdiskreten System ergibt sich der Frequenzgang aus der Übertragungsfunktion

\[
G(\Omega) = G(z)e^{-j\Omega} = \frac{4 \cdot e^{j\Omega} - 1}{4 \cdot e^{j\Omega} + 1} = \frac{4 \cdot \cos(\Omega) + j \cdot 4 \cdot \sin(\Omega) - 1}{4 \cdot \cos(\Omega) + j \cdot 4 \cdot \sin(\Omega) + 1}
\]

Entsprechend ergibt sich für den Amplitudengang

\[
A(\Omega) = \frac{4 \cdot \cos(\Omega) + j \cdot \sin(\Omega) - 1}{4 \cdot \cos(\Omega) + j \cdot \sin(\Omega) + 1} = \sqrt{\frac{(4 \cdot \cos(\Omega) - 1)^2 + 16 \cdot \sin^2(\Omega)}{(4 \cdot \cos(\Omega) + 1)^2 + 16 \cdot \sin^2(\Omega)}} = \sqrt{\frac{17 - 8 \cdot \cos(\Omega)}{17 + 8 \cdot \cos(\Omega)}}
\]
c) Skizze des Amplitudengangs

Da der Amplitudengang mit wachsender Frequenz steigt, handelt es sich um einen Hochpass.

d) Die Übertragungsfunktion ist Ausgangspunkt für die Berechnung der Differenzengleichung, die dieses Filter realisiert.

\[G(z) = \frac{Y(z)}{U(z)} = \frac{4 \cdot z - 1}{4 \cdot z + 1} \]

Durch Ausmultiplizieren und Division durch \(z \) ergibt sich

\[Y(z) \cdot (4 + 1 \cdot z^{-1}) = U(z) \cdot (4 - 1 \cdot z^{-1}) \]

Unter Berücksichtigung der Verschiebungsregel der \(z \)-Transformation ergibt sich die Differenzengleichung

\[4 \cdot y[k] + y[k-1] = 4 \cdot u[k] - u[k-1] \]

e) Das Filter ist ein rekursives Filter mit unendlich langer Impulsantwort, also ein IIR-Filter. Das ist auch an den Polen der Übertragungsfunktion abzulesen, die nicht im Ursprung der \(z \)-Ebene liegen.

8.8.3 Transformation des Frequenzgangs

Die Impulsantwort kann aus dem Spektrum des idealen Tiefpasses berechnet werden zu

\[g_t[k] = \frac{1}{2 \cdot \pi} \int_{-\Omega_0}^{\Omega_0} 1 \cdot e^{j\Omega \cdot k} \, d\Omega = \frac{1}{2 \cdot \pi} \cdot \left(\frac{e^{j\Omega_0 \cdot k}}{k} \right)_{-\Omega_0}^{\Omega_0} = \frac{1}{2 \cdot \pi} \cdot \left(\frac{e^{j\Omega_0 \cdot k} - e^{-j\Omega_0 \cdot k}}{k} \right) = \frac{1}{\pi \cdot k} \cdot \left(\frac{\sin(\Omega_0 \cdot k)}{\sin(\frac{\pi}{2} \cdot k)} \right) \]

Die Impulsfolge des zweiten Systems lautet nach der Aufgabenstellung

\[g_2[k] = (-1)^k \cdot g_t[k] \]

Die Gleichung kann als Modulation mit der Frequenz \(\Omega_0 = \pi \) aufgefasst werden:

\[g_2[k] = e^{j\omega \cdot k} \cdot g_t[k] \]

Damit ergibt sich der Frequenzgang

\[G_2(\Omega) = G_t(\Omega - \pi) \]
Beide Frequenzgänge sind in der folgenden Grafik dargestellt.

Es zeigt sich, dass durch die Verschiebung um $\Omega_0 = \pi$ aus dem Tiefpass mit der Übertragungsfunktion $G_1(\Omega)$ ein Hochpass mit der Übertragungsfunktion $G_2(\Omega)$ wird.

8.8.4 Interpretation von Übertragungsfunktionen

a) Die Übertragungsfunktion stellt das Verhältnis von z-Transformierten des Ausgangs- und Eingangssignals dar.

$$G(z) = \frac{Y(z)}{U(z)} = \frac{z^{-1} \cdot \left(1 - \frac{1}{3} z^{-1}\right)}{(1 + j \cdot \frac{1}{2} z^{-1}) \cdot \left(1 - j \cdot \frac{1}{2} z^{-1}\right)} = \frac{z^{-1} \cdot \frac{1}{3} z^{-2}}{1 - \frac{1}{4} z^{-2}} = z \cdot \frac{1}{3} z^{-3} = \frac{z}{z^2 + \frac{1}{4}}$$

Ausmultiplizieren führt zu der Gleichung

$$Y(z) \cdot \left(1 + \frac{1}{4} z^{-2}\right) = U(z) \cdot \left(z^{-1} - \frac{1}{3} z^{-2}\right)$$

Rücktransformation in den Zeitbereich mit der Verschiebungsregel führt zu der Differenzengleichung

$$y[k] = -\frac{1}{4} y[k-2] + u[k-1] - \frac{1}{3} u[k-2]$$

b) Die Nullstellen und Pole können an der Übertragungsfunktion direkt abgelesen werden zu $\beta_1 = 1/3$ und $\alpha_{1,2} = \pm j \cdot 1/2$. Sie sind im folgenden Pol-Nullstellen-Diagramm dargestellt.

c) Wegen der Stabilität des Systems errechnet sich der Frequenzgang aus der Übertragungsfunktion \(G(z) \) mit der Substitution \(z = e^{j\Omega} \) zu

\[
G(\Omega) = \frac{e^{j\Omega} - \frac{1}{3}}{e^{j\Omega} + \frac{1}{4}} = \frac{\cos(\Omega) + j \cdot \sin(\Omega) - \frac{1}{3}}{\cos(2 \cdot \Omega) + j \cdot \sin(2 \cdot \Omega) + \frac{1}{4}}
\]

Der Amplitudengang kann entweder über die Linearfaktoren berechnet werden, oder es werden Betrag und Phase direkt berechnet.

\[
A(\Omega) = \sqrt{\left(\frac{\cos(\Omega) - \frac{1}{3}}{\cos(2 \cdot \Omega) + \frac{1}{4}}\right)^2 + \sin^2(\Omega)} = \sqrt{\frac{\cos^2(\Omega) - \frac{2}{3} \cdot \cos(\Omega) + \frac{1}{9} + \sin^2(\Omega)}{\cos^2(2 \cdot \Omega) + \frac{1}{2} \cdot \cos(2 \cdot \Omega) + \frac{1}{16} + \sin^2(2 \cdot \Omega)}}
\]

\[
\varphi(\Omega) = \arctan \left(\frac{\sin(\Omega)}{\cos(\Omega) - \frac{1}{3}} \right) - \arctan \left(\frac{\sin(2 \cdot \Omega)}{\cos(2 \cdot \Omega) + \frac{1}{4}} \right)
\]

Amplituden- und Phasengang sind in der folgenden Grafik dargestellt.

Das System stellt einen Bandpass dar, da der Frequenzbereich um \(\Omega = \pm \pi/2 \) stärker verstärkt wird als der niedrige und hohe Frequenzbereich.

8.8.5 Interpretation von Pol-Nullstellen-Diagrammen

a) Aus dem Pol-Nullstellen-Diagramm werden die Nullstellen \(\beta_1 = 0 \) sowie \(\beta_2 = 0 \) sowie die Pole \(\alpha_1 = 1/2 \) und \(\alpha_2 = -1/3 \) abgelesen. Daraus ergibt sich die Systemfunktion zu

\[
G(z) = a \cdot \frac{z^2}{(z - \frac{1}{2})(z + \frac{1}{3})}
\]

Der Endwert der Sprungantwort entspricht nach dem Endwertsatz der z-Transformation dem Wert \(G(1) \). Damit gilt die Gleichung
G(1) = \frac{a \cdot 1^2}{(1 - \frac{1}{2}) \cdot (1 + \frac{1}{3})} = \frac{a}{2} = 6

und der Parameter a ergibt sich zu a = 4. Die Systemfunktion lautet damit

G(z) = \frac{4 \cdot z^2}{(z - \frac{1}{2}) \cdot (z + \frac{1}{3})}

b) Die z-Transformierte der Sprungantwort errechnet sich zu

\begin{align*}
H(z) &= \frac{4 \cdot z^2}{(z - \frac{1}{2}) \cdot (z + \frac{1}{3})} \cdot z^{-1} = \frac{4 \cdot z^3}{z^3 - \frac{7}{6} \cdot z^2 + \frac{1}{6}} = 4 + \frac{28}{6} \cdot z^{-2} - \frac{4}{6} = 4 + A \cdot z^{-1} + B \cdot z^{-2} + C \\
&= 4 + \frac{32}{5} z \cdot z^{-1} - \frac{6}{5} \cdot \frac{z}{z-\frac{1}{2}} \cdot z^{-1} - \frac{8}{15} \cdot \frac{z}{z+\frac{1}{3}} \cdot z^{-1}
\end{align*}

Mit Partialbruchzerlegung ergibt sich die Darstellung

\begin{align*}
H(z) &= 4 + \frac{32}{5} \cdot z \cdot z^{-1} - \frac{6}{5} \cdot \frac{z}{z-\frac{1}{2}} \cdot z^{-1} - \frac{8}{15} \cdot \frac{z}{z+\frac{1}{3}} \cdot z^{-1}
\end{align*}

Mit den Korrespondenzen zur z-Transformation kann die Sprungantwort bestimmt werden zu

\begin{align*}
h[k] &= 4 \cdot \delta[k] + \frac{32}{5} \cdot \sigma[k-1] - \frac{6}{5} \cdot \left(\frac{1}{2}\right)^{k-1} \cdot \sigma[k-1] - \frac{8}{15} \cdot \left(-\frac{1}{3}\right)^{k-1} \cdot \sigma[k-1]
\end{align*}

c) Das System antwortet auf die Anregung mit der Folge

\begin{align*}
u[k] &= \sigma[k] - \frac{1}{2} \cdot \sigma[k-1]
\end{align*}

wegen des Linearitätsprinzips und der Zeitinvarianz des Systems mit dem Signal

\begin{align*}
y[k] &= h[k] - \frac{1}{2} \cdot h[k-1]
\end{align*}

d) Die Übertragungsfunktion

\begin{align*}
G(z) &= \frac{4 \cdot z^2}{(z - \frac{1}{2}) \cdot (z + \frac{1}{3})} = \frac{4 \cdot z^2}{z^2 - \frac{1}{6} \cdot z - \frac{1}{6}}
\end{align*}

hat nur Pole innerhalb des Einheitskreises, das System ist demnach stabil. Mit der Substitution z = e^{j\Omega}

ergibt sich der Frequenzgang zu

\begin{align*}
G(\Omega) &= \frac{4 \cdot e^{j2\Omega}}{e^{j2\Omega} - \frac{1}{6} \cdot e^{j\Omega} - \frac{1}{6}}
\end{align*}
8.8.6 Fourier-Transformierte eines Systems

Die Fourier-Transformierte

\[G(\Omega) = \frac{Y(\Omega)}{U(\Omega)} = \frac{1}{1 - \frac{1}{2} e^{-j\Omega}} \]

entspricht der Summenformel für unendliche geometrische Reihen. Sie kann als unendliche Fourier-Reihe dargestellt werden.

\[G(\Omega) = \frac{Y(\Omega)}{U(\Omega)} = \frac{1}{1 - \frac{1}{2} e^{-j\Omega}} = \sum_{k=0}^{\infty} \left(\frac{1}{2} \right)^k e^{-j k \Omega} \]

Damit lautet die Impulsantwort \(g[k] \)

\[g[k] = \left(\frac{1}{2} \right)^k \cdot \sigma[k] \]

mit der z-Transformierten \(G(z) \)

\[G(z) = \frac{Y(z)}{U(z)} = \frac{1}{1 - \frac{1}{2} z^{-1}} \]

Rücktransformation in den Zeitbereich führt zu der Differenzengleichung

\[y[k] - \frac{1}{2} y[k-1] = u[k] \]

8.8.7 Filtervergleich

a) Aus der Korrespondenztabelle ergibt sich

\[G_1(z) = \frac{z}{z-a} \]

b) Die Übertragungsfunktion hat den Pol \(z = a \), wegen der Bedingung \(0 < a < 1 \) ist das System damit stabil und nicht schwingungsfähig. Die Übertragungsfunktion hat Pole, die nicht im Ursprung liegen. Damit handelt es sich bei dem Filter um einen rekursiven Filter, der eine unendlich lange Impulsantwort besitzt (IIR-Filter).

c) Der Frequenzgang ergibt sich mit der Substitution

\[G_1(\Omega) \bigg|_{z \rightarrow e^{j\Omega}} = \frac{z}{z-a} \bigg|_{z \rightarrow e^{j\Omega}} = \frac{e^{j\Omega}}{e^{j\Omega} - a} \]

d) Die zweite Impulsantwort kann dargestellt werden als

\[g_2[k] = a^k \cdot (\sigma[k] - \sigma[k-7]) = a^k \cdot \sigma[k] - a^k \cdot \sigma[k-7] = a^k \cdot \sigma[k] - a^7 \cdot a^{k-7} \cdot \sigma[k-7] \]

Damit führt eine Transformation in den z-Bereich zu

\[G_2(z) = \frac{z}{z-a} \cdot (1 - a^7 \cdot z^{-7}) = \frac{z}{z^7 \cdot (z-a)} \cdot (z^7 - a^7) \]

Die Übertragungsfunktion hat gemeinsame Pole und Nullstellen \(z = 0 \) und \(z = a \). Polynom-Division ergibt
\[G_2(z) = \frac{z}{z-a} \left(1 - a^7 \cdot z^{-7}\right) = \frac{a^6 + z \cdot a^5 + z^2 \cdot a^4 + z^3 \cdot a^3 + z^4 \cdot a^2 + z^5 \cdot a + z^6}{z^6} \]

Derselbe Ausdruck ergibt sich, wenn die Folge direkt über die Impulse dargestellt wird:

\[g_2[k] = a^k \cdot \left(\sigma[k] - \sigma[k-7]\right) \]

\[= a^0 \cdot \delta[k] + a^1 \cdot \delta[k-1] + a^2 \cdot \delta[k-2] + a^3 \cdot \delta[k-3] + a^4 \cdot \delta[k-4] + a^5 \cdot \delta[k-5] + a^6 \cdot \delta[k-6] \]

Es ergibt sich die Übertragungsfunktion

\[G_2(z) = a^6 + a^7 \cdot z^{-1} + a^2 \cdot z^{-2} + a^3 \cdot z^{-3} + a^4 \cdot z^{-4} + a^5 \cdot z^{-5} + a^6 \cdot z^{-6} \]

\[= \frac{a^6 + z \cdot a^5 + z^2 \cdot a^4 + z^3 \cdot a^3 + z^4 \cdot a^2 + z^5 \cdot a + z^6}{z^6} \]

e) Die Übertragungsfunktion hat nur Pole im Koordinatenursprung und ist damit unabhängig von dem Parameter \(a \) immer stabil und nicht schwingungsfähig. Es handelt sich damit um einen nichtrekursiven Filter mit endlicher Impulsantwort (FIR-Filter).

f) Der Frequenzgang errechnet sich wieder durch die Substitution \(z = e^{j \Omega} \) zu

\[G_2(\Omega) = G_2(z) \bigg|_{z=e^{j\Omega}} = \frac{e^{j\Omega}}{e^{j\Omega} - a} \left(1 - a^7 \cdot e^{-j7\Omega}\right) \]

g) Der Filter \(G_1 \) hat denselben Frequenzgang wie der Filter \(G_2 \), wenn für den zweiten Faktor gilt:

\[|a^7 \cdot e^{-j7\Omega}| < 1 \]

Da die Exponentialfunktion den Betrag 1 hat, ergibt sich als Forderung für \(a \):

\[|a| < 1 \]

Dieses Ergebnis kann auch anschaulich interpretiert werden. Für sehr kleine Beträge von \(a \) ist die Impulsantwort zu dem Zeitpunkt, an dem der FIR-Filter seine Impulsantwort begrenzt, ohnehin nahe null und damit nicht relevant.

h) Es ergeben sich folgende Vor- und Nachteile

<table>
<thead>
<tr>
<th>IIR-Filter (rekursiv)</th>
<th>FIR-Filter (nicht rekursiv)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N = 1), geringer Realisierungsaufwand</td>
<td>(N = 6), hoher Realisierungsaufwand</td>
</tr>
<tr>
<td>Stabilität muss geprüft werden</td>
<td>immer stabil</td>
</tr>
<tr>
<td>Sprungantwort schwingt bei reellen Pole nicht über</td>
<td>Sprungantwort kann überschwingen</td>
</tr>
<tr>
<td>Stationärer Endwert wird nie exakt erreicht</td>
<td>Stationäre Endwert wird erreicht</td>
</tr>
</tbody>
</table>
8.8.8 Eigenschaften eines FIR-Filters

a) Das Filter ist kausal, da die Impulsantwort für \(k < 0 \) null ist. Das System reagiert damit erst, nachdem es angeregt wird, es ist kausal.

b) FIR-Filter sind immer stabil, da sie nur Pole im Koordinatenursprung haben.

c) Zur Bewertung der linearen Phase muss der Frequenzgang berechnet werden. Der Frequenzgang ist die Fourier-Transformierte der Impulsantwort.

\[
G(\Omega) = 1 + e^{-j\Omega} + e^{-j2\Omega} - 2 \cdot e^{-j3\Omega} + e^{-j4\Omega} + e^{-j5\Omega} + e^{-j6\Omega}
\]

\[
= e^{-j3\Omega} \cdot (e^{j\Omega} + e^{j2\Omega} + e^{j3\Omega} - 2 + e^{-j\Omega} + e^{-j2\Omega} + e^{-j3\Omega})
\]

\[
= e^{-j3\Omega} \cdot 2 \cdot (\cos(\Omega) + \cos(2 \cdot \Omega) + \cos(3 \cdot \Omega) - 2)
\]

Wegen der Symmetrie der Impulsantwort kann der Term \(e^{-j3\Omega} \) ausgeklammert werden. Er stellt die lineare Phase dar. Das System weist deshalb wegen der Symmetrie der Impulsantwort eine lineare Phase auf.

8.8.9 Vorwärts- und Rückwärtsprädiktor

a) Die Impulsantwort des Rückwärtsprädiktors ergibt sich nach einer Transformation in den \(z \)-Bereich

\[
G_R(z) = \frac{1}{1 + a_R \cdot z^{-1}} = \frac{z}{z + a_R}
\]

und anschließender Rücktransformation zu

\[
g_R[k] = (-a_R)^k \cdot \sigma[k]
\]

Der Vorwärtsprädiktor hat die \(z \)-Transformierte

\[
G_V(z) = 1 + a_V \cdot z^{-1} = \frac{z + a_V}{z}
\]

und die Impulsantwort

\[
g_V[k] = \delta[k] + (-a_V)^{k-1} \cdot \sigma[k-1] = (-a_V)^k \cdot \sigma[k]
\]

b) Da beide Systeme stabil sind, kann der Frequenzgang direkt aus der \(z \)-Transformierten abgelesen werden zu

\[
G_R(\Omega) = \frac{1}{1 + a_R \cdot e^{-j\Omega}}
\]

und

\[
G_V(\Omega) = 1 + a_V \cdot e^{-j\Omega}
\]

c) Der gesamte Frequenzgang ergibt sich durch Multiplikation der einzelnen Prädikatoren.

\[
G(\Omega) = G_R(\Omega) \cdot G_V(\Omega) = \frac{1 + a_V \cdot e^{-j\Omega}}{1 + a_R \cdot e^{-j\Omega}}
\]

d) Für die Variablen \(a_R \) und \(a_V \) muss die Bedingung \(a_R = a_V \) gelten. In dem Fall ist

\[
G(\Omega) = G_R(\Omega) \cdot G_V(\Omega) = \frac{1 + a_R \cdot e^{-j\Omega}}{1 + a_R \cdot e^{-j\Omega}} = 1
\]
Das Eingangssignal erscheint somit unverändert am Ausgang.

e) Das Rückwärtsprädiktionsfilter ist für $0 < a_R < 1$ ein Tiefpass erster Ordnung. Der Vorwärtsprädikator muss ein zum Rückwärtsprädikator inverses Verhalten besitzen.

8.8.10 Transformation eines Filters in ein minimalphasiges Filter

Das Filter hat die Übertragungsfunktion

$$G(z) = -1 + z^2 + 6 \cdot z^{-3} = \frac{-z^3 + z^1 + 6}{z^1}$$

Die Nullstelle $\beta_1 = 2$ kann erraten werden. Damit errechnen sich die weiteren Nullstellen mit

$$z^3 - z^1 - 6 = (z - 2) \cdot (z^2 + 2 \cdot z + 3)$$

zu

$$\beta_{2,3} = -\frac{2}{z} \pm \sqrt{1 - 3} = -1 \pm j \cdot \sqrt{2} = \sqrt{3} \cdot e^{i2.186}$$

Alle drei Nullstellen liegen außerhalb des Einheitskreises und müssen deshalb über einen Allpass kompensiert werden.

$$G_A(z) = \frac{(1 - \beta_1 \cdot z) \cdot (1 - \beta_2 \cdot z) \cdot (1 - \beta_3 \cdot z)}{(z - \beta_1) \cdot (z - \beta_2) \cdot (z - \beta_3)} = \frac{(1 - 2 \cdot z) \cdot (1 + (1 - j \cdot \sqrt{2}) \cdot z) \cdot (1 + (1 + j \cdot \sqrt{2}) \cdot z)}{(z - 2) \cdot (z + 1 + j \cdot \sqrt{2}) \cdot (z + 1 - j \cdot \sqrt{2})} = \frac{(1 - \frac{1}{2} \cdot z) \cdot (1 + 2 \cdot z + 3 \cdot z^2)}{(z - 2) \cdot (z^2 + 2 \cdot z + 3)}$$

Die Übertragungsfunktion des minimalphasigen Systems $G_M(z)$ ergibt sich damit zu

$$G_M(z) = G(z) \cdot G_A(z) = \frac{(z - 2) \cdot (z^2 + 2 \cdot z + 3)}{z^3} \cdot \frac{(1 - \frac{1}{2} \cdot z) \cdot (1 + 2 \cdot z + 3 \cdot z^2)}{(z - 2) \cdot (z^2 + 2 \cdot z + 3)} = \frac{(2 - z) \cdot (1 + 2 \cdot z + 3 \cdot z^2)}{2 \cdot z^3}$$

8.8.11 Synthese eines minimalphasigen Filters

a) Das Filter hat die Übertragungsfunktion

$$G(z) = k \cdot \frac{(z - 2 + j \cdot 2) \cdot (z - 2 - j \cdot 2)}{(z - 0.5 + j \cdot 0.5) \cdot (z - 0.5 - j \cdot 0.5)} = k \cdot \frac{(z - 2)^2 + 4}{(z - 0.5)^2 + 0.25} = k \cdot \frac{z^2 - 4 \cdot z + 8}{z^2 - z + 0.5}$$

Aus der Bedingung für die Verstärkung von 1 ergibt sich die Gleichung

$$G(1) = k \cdot \frac{1 - 4 + 8}{1 + 0.5} = k \cdot 10 = 1$$

Damit muss $k = 1/10$ sein.

b) Da die Pole nicht alle im Koordinatenursprung liegen, handelt es sich um ein IIR-Filter mit unendlich langer Impulsantwort.
c). Wird das Filter in ein minimalphasiges Filter überführt, liegen die Nullstellen genau auf den Polen des Systems. Damit hat es die Übertragungsfunktion

\[G_N(z) = k = \frac{1}{10} \]
9 Zeitdiskrete Realisierung zeitkontinuierlicher Systeme

Zum einen kann die Impulsantwort des zeitkontinuierlichen Systems zeitdiskret nachgebildet werden. Dabei wird das zeitkontinuierliche System mit der zeitkontinuierlichen Impulsantwort $\delta(t)$ und das zeitdiskrete System mit dem zeitdiskreten Impuls $\delta[k]$ angeregt. Das zeitdiskrete System wird so entworfen, dass es an den Stellen $t = k \cdot T_A$ dieselben Werte aufweist wie das zeitkontinuierliche System. Die entsprechende Entwurfsmethode wird als impulsinvarianter Entwurf bezeichnet.

Zum anderen kann anhand des Beispiels der Integration ein Zusammenhang zwischen der Übertragungsfunktion des zeitkontinuierlichen Systems $G(s)$ und der Übertragungsfunktion des zeitdiskreten Systems $G(z)$ hergestellt werden. Das Verfahren führt zur sogenannten bilinearen Transformation. Sie wird insbesondere zur Entwicklung zeitdiskreter Filter eingesetzt.

Darüber hinaus lässt sich die Zustandsgleichung von Systemen mithilfe der Transitionsmatrix zeitdiskret lösen. Dieser Lösungsansatz ermöglicht darüber hinaus die Lösung von nichtlinearen und zeitabhängigen Zustandsgleichungen.

Im Online-Portal Systemtheorie Online verdeutlicht die Applikation Transformation die Approximation zeitkontinuierlicher Systeme durch zeitdiskrete Systeme.

9.1 Impulsinvarianter Entwurf zeitdiskreter Systeme

Eine Möglichkeit der zeitdiskreten Implementierung zeitkontinuierlicher Systeme ergibt sich aus der Abtastung der Impulsantwort $g(t)$. Technisch realisierbare zeitkontinuierliche Systeme sind kausal und stabil. Im Folgenden wird zur Vereinfachung angenommen, dass sie einfache reelle und konjugiert komplexe Polpaare besitzen. Da mit diesen Voraussetzungen der Zählergrad der Übertragungsfunktion bei realisierbaren Systemen kleiner oder gleich dem Nennergrad ist, lässt sich die Übertragungsfunktion als Summe einzelner Partialbrüche darstellen.

$$G(s) = A_0 + \sum_{n=1}^{N} \frac{A_n}{s - \alpha_n}$$ (9.1)

Diese Darstellung führt zu der zeitkontinuierlichen Impulsantwort

$$g(t) = A_0 \cdot \delta(t) + \sum_{n=1}^{N} A_n \cdot e^{\alpha_n t} \cdot \sigma(t)$$ (9.2)
Die zeitkontinuierliche und die zeitdiskrete Impulsantwort soll an den Stellen \(t = k \cdot T_A \) dieselben Werte aufweisen. Damit ergibt sich die Impulsantwort des zeitdiskreten Systems zu

\[
g[k] = g(k \cdot T_A) = A_0 \cdot \delta(k \cdot T_A) + \sum_{n=1}^{N} A_n \cdot e^{\alpha_n \cdot T_A} \cdot \sigma(k \cdot T_A)
\]

(9.3)

Die \(z \)-Transformierte \(G(z) \) der Impulsantwort \(g[k] \) berechnet sich über die Definitionsgleichung der \(z \)-Transformation zu

\[
G(z) = \sum_{k=0}^{\infty} g[k] \cdot z^{-k} = \sum_{k=0}^{\infty} \left(A_0 \cdot \delta(k \cdot T_A) + \sum_{n=1}^{N} A_n \cdot e^{\alpha_n \cdot k \cdot T_A} \cdot \sigma(k \cdot T_A) \right) \cdot z^{-k}
\]

\[
= A_0 + \sum_{k=0}^{\infty} \sum_{n=1}^{N} A_n \cdot e^{\alpha_n \cdot k \cdot T_A} \cdot z^{-k}
\]

(9.4)

Vertauschen der Summationsreihenfolge und Anwendung der Summenformel für die geometrische Reihe führt zu

\[
G(z) = A_0 + \sum_{n=1}^{N} \sum_{k=0}^{\infty} A_n \cdot e^{\alpha_n \cdot k \cdot T_A} \cdot z^{-k} = A_0 + \sum_{n=1}^{N} A_n \cdot \sum_{k=0}^{\infty} \left(e^{\alpha_n \cdot T_A} \cdot z^{-1} \right)^k
\]

\[
= A_0 + \sum_{n=1}^{N} A_n \cdot \frac{1}{1 - e^{\alpha_n \cdot T_A} \cdot z^{-1}} = A_0 + \sum_{n=1}^{N} A_n \cdot \frac{z}{z - e^{\alpha_n \cdot T_A}}
\]

(9.5)

Diese Übertragungsfunktion hat einen Konvergenzbereich von

\[
\left| e^{\alpha_n \cdot T_A} \right| < |z|
\]

(9.6)

Da die Polstellen \(\alpha_n \) zu einem stabilen zeitkontinuierlichen System gehören, liegen sie in der negativen Halbebene. Damit liegen die Pole der Übertragungsfunktion \(G(z) \) innerhalb des Einheitskreises. Die zeitdiskreten Systeme sind deshalb ebenfalls stabil.

Beispiel: Impulsinvarianter Entwurf eines Tiefpasses erster Ordnung

Um das Verfahren zu verdeutlichen, wird es an einem PT1-Glied angewendet. Das Übertragungsglied besitzt die Übertragungsfunktion

\[
G(s) = \frac{1}{1 + T \cdot s} = \frac{\omega_G}{s + \omega_G}
\]

(9.7)

und die zeitkontinuierliche Impulsantwort

\[
g(t) = \omega_G \cdot e^{\omega_G \cdot t} \cdot \sigma(t)
\]

(9.8)

Mit dem Pol \(\alpha = -\omega_G \) ergibt sich die Übertragungsfunktion des zeitdiskreten Systems von

\[
G(z) = \frac{Y(z)}{U(z)} = \omega_G \cdot \frac{z}{z - e^{-\omega_G \cdot T_A}} = \omega_G \cdot \frac{1}{1 - e^{-\omega_G \cdot T_A} \cdot z^{-1}}
\]

(9.9)

und das System kann mit der Differenzengleichung
\[y[k] = \omega_0 \cdot u[k] + e^{-\omega_0 \cdot T_A} \cdot y[k-1] \] (9.10)

realisiert werden. Bild 9.1 vergleicht das zeitkontinuierliche und das zeitdiskrete System im Zeitbereich für \(T = 5 \) und \(T_A = 1 \).

Bild 9.1: Vergleich des zeitkontinuierlichen und des zeitdiskreten Systems im Zeitbereich bei impulsinvariantem Entwurf für \(T = 5 \) und \(T_A = 1 \)

Die beiden Impulsantworten \(g(t) \) und \(g[k] \) stimmen erwartungsgemäß an den Stellen \(t = k \cdot T_A \) überein.

Bild 9.2 vergleicht die beiden Systeme im Frequenzbereich.

Bild 9.2: Vergleich des zeitkontinuierlichen und des zeitdiskreten Systems im Frequenzbereich bei impulsinvariantem Entwurf für \(T = 5 \) und \(T_A = 1 \)

Die beiden Amplitudengänge stimmen im Bereich kleiner Frequenzen sehr gut überein. Die Abweichungen im Frequenzbereich \(\pi/2 < \Omega < \pi \) sind auf die periodische Wiederholung des Spektrums zurückzuführen. Da der Amplitudengang an der Stelle \(\Omega = \pi \) noch nicht vollständig verschwindet, wird die periodische Fortsetzung in das Basisband gefaltet. Dieser Effekt sinkt mit steigender Zeitkonstante \(T \) des Systems, da damit die eigentlich erforderliche Bandbegrenzung des Systems besser realisiert wird. Alternativ kann die Abtastzeit reduziert werden.

Beide Systeme weisen einen einfachen reellen Pol auf. Die zusätzliche Nullstelle im zeitdiskreten System führt bei normierte Frequenzen $\Omega = \pm \pi$ zu einer Phase $\varphi = 0$.

Das Vorgehen zum impulsinvarianten Entwurf zeitdiskreter Systeme ist in Tabelle 9.1 zusammengefasst.

Tabelle 9.1: Vorgehen zum impulsinvarianten Entwurf zeitdiskreter Systeme

<table>
<thead>
<tr>
<th>Schritt</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Entwurf eines zeitkontinuierlichen Systems $G(s)$</td>
</tr>
<tr>
<td>2</td>
<td>Darstellung des Systems als Summe von Partialbrüchen $G(s) = A_0 + \sum_{n=1}^{N} \frac{A_n}{s - \alpha_n}$</td>
</tr>
<tr>
<td>3</td>
<td>Zeitdiskretes System besitzt die Übertragungsfunktion $G(z)$ $G(z) = A_0 + \sum_{n=1}^{N} A_n \cdot \frac{1}{1 - e^{-\alpha_n \cdot T} \cdot z^{-1}}$</td>
</tr>
<tr>
<td>4</td>
<td>Aufstellen der Differenzengleichung durch Rücktransformation der Gleichung $G(z)$ in den Zeitbereich $G(z) = \frac{Y(z)}{U(z)}$</td>
</tr>
<tr>
<td>5</td>
<td>Auflösen der Differenzengleichung nach $y[k]$</td>
</tr>
</tbody>
</table>
9.2 Konvertierung der Übertragungsfunktion \(G(s) \) in die Übertragungsfunktion \(G(z) \)

Bei der Einführung der \(z \)-Transformation wird die zeitliche Verschiebung um \(T_A \) mit der Variablen \(z \) beschrieben.

\[
z = e^{T_A s}
\]
(9.11)

Dadurch wird einen Punkt der komplexen \(s \)-Ebene ein Punkt der komplexen \(z \)-Ebene zugeordnet. Um von der gebrochen rationalen Übertragungsfunktion \(G(s) \) zu einer Übertragungsfunktion \(G(z) \) zu kommen, müsste die Variable \(s \) substituiert werden durch

\[
s = \frac{1}{T_A} \cdot \ln(z)
\]
(9.12)

Damit wäre die Übertragungsfunktion \(G(z) \) aber rationale Funktion mehr. Die Realisierung des Systems mit einer Differenzengleichung wäre nicht möglich. Es muss demnach eine Abbildungsvorschrift gefunden werden, die eine gebrochen rationale Funktion in \(s \) in eine gebrochen rationale Funktion in \(z \) überführt. Ausgangspunkt für die Herleitung der Abbildungsvorschrift ist ein Integrator, der für kausale Signale zeitkontinuierlich mit der Gleichung

\[
y(t) = \int_0^t u(\tau) \, d\tau
\]
(9.13)

beschrieben wird. Im Laplace-Bereich besitzt er die Übertragungsfunktion

\[
G(s) = \frac{Y(s)}{U(s)} = \frac{1}{s}
\]
(9.14)

Zur Herleitung der Transformationsvorschrift vom Laplace-Bereich in den \(z \)-Bereich werden verschiedene zeitdiskrete Verfahren untersucht, mit denen der Integrator approximiert wird. Im Einzelnen sind das die Verfahren

- Backward-Euler-Verfahren
- Forward-Euler-Verfahren
- Trapezregel oder bilineare Transformation

Bild 9.4 vergleicht die Grundidee der unterschiedlichen Verfahren.

Bild 9.4: Unterschiedliche Verfahren zur zeitdiskreten Approximation eines Integrators
Das Integral einer Funktion entspricht der Fläche unter der Kurve. Sind von der zu integrierenden Kurve nur die Stützstellen \(u(k \cdot T_A) = u[k] \) bekannt, kann die Fläche mit diesen Punkten nur approximiert werden.

9.2.1 Backward-Euler-Verfahren

Das Backward-Euler-Verfahren verwendet zur Approximation des Integrals die Gleichung

\[
y[k] = y[k - 1] + u[k] \cdot T_A \quad (9.15)
\]

Der aktuelle Wert des Ausgangssignals ergibt sich aus dem letzten Integrationswert \(y[k - 1] \) und der Approximation der Fläche in dem neuen Segment über ein Rechteck der Breite \(T_A \) und der Höhe \(u[k] \). Die Transformation der Gleichung in den \(z \)-Bereich führt zu der Übertragungsfunktion

\[
G(z) = \frac{Y(z)}{U(z)} = \frac{T_A}{1 - z^{-1}} = \frac{z \cdot T_A}{z - 1} \quad (9.16)
\]

Ein Vergleich mit der Übertragungsfunktion des Integrators im Laplace-Bereich nach Gleichung (9.14) führt zu der Transformation der Variable \(s \) des Laplace-Bereiches durch die Transformationsgleichung

\[
s = \frac{z - 1}{z \cdot T_A} \quad (9.17)
\]

Umgekehrt kann die Variable \(z \) des zeitdiskreten Systems ersetzt werden durch

\[
z = \frac{1}{1 - s \cdot T_A} \quad (9.18)
\]

Beispiel: Entwurf eines Tiefpasses erster Ordnung nach dem Backward-Euler-Verfahren

Für das in Abschnitt 9.2.1 beschriebene PT1-Glied ergibt sich mit dieser Transformation die Übertragungsfunktion

\[
G(z) = \frac{Y(z)}{U(z)} = G(s) \bigg|_{s = \frac{z - 1}{z \cdot T_A}} = \frac{1}{1 + \frac{T_A}{T} \cdot \frac{z - 1}{z \cdot T_A}} = \frac{z \cdot T_A}{z \cdot T_A + T \cdot z - T} = \frac{T_A}{T_A + T \cdot z^{-1}} \quad (9.19)
\]

Das System könnte mit der Differenzengleichung

\[
y[k] = \frac{T_A \cdot x[k] + T \cdot y[k - 1]}{T_A + T} \quad (9.20)
\]

implementiert werden.

Der Zusammenhang zwischen Laplace- und \(z \)-Transformation wird in Kapitel 5.1.4 diskutiert. Der dort herausgearbeitete Zusammenhang
\[z = e^{s \cdot T_A} \quad (9.21) \]

wird im Folgenden mit Zusammenhang

\[z = \frac{1}{1 - s \cdot T_A} \quad (9.22) \]

verglichen, der sich aus dem Backward-Euler-Verfahren ergibt. Durch Einsetzen der Bedingung \(s = j \cdot \omega \) kann die Abbildung der imaginären Achse der s-Ebene auf die z-Ebene bestimmt werden.

\[z = \frac{1}{1 - j \cdot \omega \cdot T_A} = \frac{1}{1 - j \cdot \Omega} = -\frac{1}{\sqrt{1 + \Omega^2}} \cdot e^{-j \cdot \text{arctan}(\Omega)} \quad (9.23) \]

Bild 9.5 stellt die Abbildung der imaginären Achse der s-Ebene auf die z-Ebene bei Verwendung des Backward-Euler-Verfahrens dar.

9.2.2 Forward-Euler-Verfahren

Das Forward-Euler-Verfahren verwendet zur Approximation des Integrals die Gleichung

\[y[k] = y[k-1] + u[k-1] \cdot T_A \quad (9.24) \]

Der aktuelle Wert des Ausgangssignals ergibt sich bei dem Forward-Euler-Verfahren aus dem letzten Integrationswert \(y[k-1] \) und der Approximation der Fläche in dem neuen Segment über ein Rechteck der Breite \(T_A \) und der Höhe \(u[k-1] \). Die Transformation der Gleichung in den z-Bereich führt zu der Übertragungsfunktion
\[G(z) = \frac{Y(z)}{U(z)} = \frac{z^{-1} \cdot T_A}{1 - z^{-1}} = \frac{T_A}{z - 1} \]

(9.25)

Wieder wird die Übertragungsfunktion \(G(z) \) mit der des Integrators im Laplace-Bereich (Gleichung (9.14)) verglichen. Die Variable \(s \) des Laplace-Bereiches entspricht

\[s = \frac{z - 1}{T_A} \]

(9.26)

beziehungsweise

\[z = 1 + s \cdot T_A \]

(9.27)

Beispiel: Entwurf eines Tiefpasses erster Ordnung nach dem Forward-Euler-Verfahren

Für das in Abschnitt 9.2.1 beschriebene PT1-Glied ergibt sich mit dieser Transformation die Übertragungsfunktion

\[G(z) = \frac{Y(z)}{U(z)} = G(s) \bigg|_{z = \frac{1}{1 + T \cdot \frac{z - 1}{T_A}}} = \frac{T_A}{T_A - T \cdot z} = \frac{T_A \cdot z^{-1}}{(T_A - T) \cdot z^{-1} + T} \]

(9.28)

Das System könnte mit der Differenzengleichung

\[y[k] = \frac{T_A \cdot u[k] + (T - T_A) \cdot y[k - 1]}{T} \]

(9.29)

implementiert werden.

Auch für das Forward-Euler-Verfahren wird die Abbildung der imaginären Achse der \(s \)-Ebene auf die \(z \)-Ebene untersucht.

\[z = 1 + j \cdot \omega \cdot T_A = 1 + j \cdot \Omega = \sqrt{1 + \Omega^2} \cdot e^{j \arctan(\Omega)} \]

(9.30)

Bild 9.6 stellt die Abbildung der imaginären Achse der \(s \)-Ebene auf die \(z \)-Ebene bei Verwendung des Forward-Euler-Verfahrens dar.
Nach der Definitionsgleichung der z-Transformation wird die imaginäre Achse der Laplace-Ebene auf den Einheitskreis der z-Ebene abgebildet. Mit dem Forward-Euler-Verfahren wird die imaginäre Achse der Laplace-Ebene im Gegensatz dazu auf die Gerade $1 + j \cdot \Omega$ abgebildet. Die negative s-Halbebene wird in den Bereich $\Re(z) < 1$ abgebildet. Bei dem Forward-Euler-Verfahren kann ein stabiles zeitkontinuierliches System $G(s)$ in ein instabiles zeitdiskretes System $G(z)$ abgebildet werden. Aus diesem Grund wird dieses Verfahren im Folgenden nicht weiter verfolgt.

9.2.3 Trapezregel und bilineare Transformation

Bei der Trapezregel wird eine abschnittsweise lineare Funktion zur Approximation der Fläche unter der Kurve $x(t)$ verwendet.

\[
y[k] = y[k-1] + \frac{u[k] + u[k-1]}{2} \cdot T_A
\]

(9.31)

Der aktuelle Wert des Ausgangsignals ergibt sich bei der Trapezregel aus dem letzten Integrationswert $y[k - 1]$, über ein Trapez der Breite T_A und den beiden Punkten $u[k - 1]$ und $u[k]$. Die Transformation der Gleichung in den z-Bereich führt zu der Übertragungsfunktion

\[
G(z) = \frac{Y(z)}{U(z)} = \frac{T_A}{2} \cdot \frac{1 + z^{-1}}{1 - z^{-1}} = \frac{T_A}{2} \cdot \frac{z + 1}{z - 1}
\]

(9.32)

Wieder wird die Übertragungsfunktion $G(z)$ mit der des Integrators im Laplace-Bereich (Gleichung (9.14)) verglichen. Die Variable s des Laplace-Bereiches entspricht

\[
s = \frac{2}{T_A} \cdot \frac{z-1}{z+1}
\]

(9.33)

beziehungsweise

\[
z = \frac{2 + T_A \cdot s}{2 - T_A \cdot s}
\]

(9.34)
Beispiel: Entwurf eines Tiefpasses erster Ordnung mit der bilinearen Transformation

Für das in Abschnitt 9.2.1 beschriebene PT1-Glied ergibt sich mit der bilinearen Transformation die Übertragungsfunktion

\[
G(z) = \frac{Y(z)}{U(z)} = G(s)\big|_{s = \frac{z - 1}{T}} = \frac{1}{1 + \frac{T}{T_1}} \cdot \frac{z - 1}{z + 1} = \frac{z \cdot T_a + T_A}{z \cdot (T_a + 2 \cdot T) + T_a \cdot z^{-1}} = \frac{T_a + T_A \cdot z^{-1}}{(T_a + 2 \cdot T) + (T_a - 2 \cdot T)z^{-1}}
\]

(9.35)

Das System könnte mit der Differenzengleichung

\[
y[k] = \frac{y[k]}{T_a + 2 \cdot T}
\]

(9.36)

implementiert werden.

Durch Einsetzen der Bedingung \(s = j \cdot \omega \) wird wieder die Abbildung der imaginären Achse der \(s \)-Ebene auf die \(z \)-Ebene untersucht.

\[
z = \frac{2 + T_a \cdot j \cdot \omega}{2 - T_a \cdot j \cdot \omega} = e^{j2 \cdot \text{arctan} \left(\frac{T_a}{2} \right)} = e^{j2 \cdot \text{arctan} \left(\frac{\Omega}{2} \right)}
\]

(9.37)

Bild 9.7 stellt die Abbildung der imaginären Achse der \(s \)-Ebene auf die \(z \)-Ebene bei Approximation der Variable \(z \) über eine algebraische Gleichung in \(s \) dar.

Die bilineare Transformation bildet die imaginäre Achse der \(s \)-Ebene auf den Einheitskreis der \(z \)-Ebene ab, die linke \(s \)-Halbebene wird in das Innere des Einheitskreises der \(z \)-Ebene abgebildet. Damit bleibt ein stabiles System bei der bilinearen Transformation ein stabiles System. Ein Vergleich mit dem bei der Herleitung gebrauchten Ausdruck

\[
z = e^{j \Omega}
\]

(9.38)

führt zu dem Zusammenhang zwischen der Kreisfrequenz \(\omega \) des zeitkontinuierlichen Systems und der normierten Kreisfrequenz \(\Omega_0 \) des zeitdiskreten Systems, das sich aus der bilinearen Transformation ergibt.
9.2 Konvertierung der Übertragungsfunktion \(G(s) \) in die Übertragungsfunktion \(G(z) \)

\[
\Omega_b = 2 \cdot \arctan \left(\frac{\omega \cdot T_A}{2} \right) = 2 \cdot \arctan \left(\frac{\Omega}{2} \right) \tag{9.39}
\]

beziehungsweise

\[
\omega = \frac{2}{T_A} \cdot \tan \left(\frac{\Omega_b}{2} \right) \tag{9.40}
\]

oder

\[
\Omega = 2 \cdot \tan \left(\frac{\Omega_b}{2} \right) \tag{9.41}
\]

Die Frequenz wird durch die bilineare Transformation nicht linear, sondern verzerrt abgebildet. In Bild 9.8 wird diese Verzerrung der Frequenzachse grafisch dargestellt.

Bild 9.8: Visualisierung der Verzerrung der Frequenzachse durch die bilineare Transformation

Tabelle 9.2: Vorgehen zum Entwurf zeitdiskreter Systeme mit der bilinearen Transformation

<table>
<thead>
<tr>
<th>Schritt</th>
<th>Beschreibung</th>
</tr>
</thead>
</table>
| 1 | Entwurf eines analogen Systems mit der Übertragungsfunktion \(G(s) \), dabei Berücksichtigung der Frequenzverschiebung (Prewarping)
\[
\omega_{GP} = \frac{2}{T_A} \cdot \tan \left(\frac{\Omega_G}{2} \right) = \frac{2}{T_A} \cdot \tan \left(\frac{\omega_G \cdot T_A}{2} \right)
\] |
| 2 | Transformation des zeitkontinuierlichen Systems \(G(s) \) in ein zeitdiskretes System mit der bilinearen Transformation, Durchführung der Substitution
\[
s = \frac{2}{T_A} \cdot \frac{z-1}{z+1}
\] |
| 3 | Aufstellen der Differenzengleichung durch Rücktransformation der Gleichung \(G(z) \) in den Zeitbereich
\[
G(z) = \frac{Y(z)}{U(z)}
\] |
| 4 | Auflösen der Differenzengleichung nach \(y[k] \) |

Beispiel: Zeitdiskrete Beschreibung des Aufheizverhaltens eines Transistors

Das Aufheizverhalten eines Transistors kann über die Differentialgleichung
\[
C_{TH} \frac{dT}{dt} = p_{EL}(t) - \frac{1}{R_{TH}} \cdot T(t)
\]
(9.42)
beschrieben werden. Dabei bezeichnet \(T \) die Temperaturdifferenz zur Umgebungstemperatur gemessen in K, \(C_{TH} \) ist die thermische Wärmekapazität, \(R_{TH} \) der thermische Widerstand und \(p_{EL} \) die elektrische Leistung in W, die den Transistor aufheizt. In der Anordnung beträgt die thermische Kapazität \(C_{TH} = 0.2 \) Ws/K und der thermische Widerstand \(R_{TH} = 5 \) K/W.

Das Aufheizverhalten soll in Abhängigkeit der elektrischen Leistung \(p_{EL}(t) \) zeitdiskret simuliert werden. Zum Zeitpunkt \(t = 0 \) hat das System die Temperatur der Umgebung \(T(0) = 0 \). Für den Zeitraum \(t < 0 \) ist die elektrische Leistung \(p_{EL}(t) = 0 \), für \(t > 0 \) ist die elektrische Leistung zunächst eine beliebige Funktion der Zeit.

Transformation der Differentialgleichung in den Laplace-Bereich führt unter Berücksichtigung der Differentiationsregel und wegen der verschwindenden Anfangsbedingungen zu
\[
(R_{TH} \cdot C_{TH} \cdot s + 1) \cdot T(s) = R_{TH} \cdot P_{EL}(s)
\]
(9.43)
Aus der Gleichung im Laplace-Bereich ergibt sich die Übertragungsfunktion
\[
\frac{\bar{T}(s)}{\bar{P}_{EL}(s)} = \frac{R_{TH}}{R_{TH} \cdot C_{TH} \cdot s + 1}
\]
(9.44)
Mit der bilinearen Transformation ergibt sich aus der Übertragungsfunktion im Laplace-Bereich die Übertragungsfunktion im \(z \)-Bereich zu
\[
T(z) = \frac{R_{\text{TH}}}{P_{\text{EL}}(z)} = \frac{R_{\text{TH}}}{R_{\text{TH}} \cdot C_{\text{TH}} \cdot s + 1} = \frac{R_{\text{TH}}}{R_{\text{TH}} \cdot C_{\text{TH}} \cdot \frac{T_s}{\tau_s} \cdot z^{-1} + 1}
\]
\[
= \frac{R_{\text{TH}} \cdot T_A \cdot (z+1)}{R_{\text{TH}} \cdot C_{\text{TH}} \cdot 2 \cdot (z-1) + T_A \cdot (z+1)}
\]
\[
= \frac{R_{\text{TH}} \cdot T_A \cdot z + R_{\text{TH}} \cdot T_A}{(R_{\text{TH}} \cdot C_{\text{TH}} \cdot 2 + T_A) \cdot z + (T_A - R_{\text{TH}} \cdot C_{\text{TH}} \cdot 2)}
\]
\[
= \frac{R_{\text{TH}} \cdot T_A + R_{\text{TH}} \cdot T_A \cdot z^{-1}}{(R_{\text{TH}} \cdot C_{\text{TH}} \cdot 2 + T_A) \cdot z + (T_A - R_{\text{TH}} \cdot C_{\text{TH}} \cdot 2) \cdot z^{-1}}
\]

(9.45)

Nach dem Ausmultiplizieren
\[
T(z) \cdot (R_{\text{TH}} \cdot C_{\text{TH}} \cdot 2 + T_A) + T(z) \cdot (T_A - R_{\text{TH}} \cdot C_{\text{TH}} \cdot 2) \cdot z^{-1}
\]
\[
= R_{\text{TH}} \cdot T_A \cdot P_{\text{EL}}(z) + R_{\text{TH}} \cdot T_A \cdot z^{-1} \cdot P_{\text{EL}}(z)
\]

(9.46)

kann das System als Differenzengleichung dargestellt werden
\[
T[k] \cdot (R_{\text{TH}} \cdot C_{\text{TH}} \cdot 2 + T_A) + T[k-1] \cdot (T_A - R_{\text{TH}} \cdot C_{\text{TH}} \cdot 2)
\]
\[
= R_{\text{TH}} \cdot T_A \cdot P_{\text{EL}}[k] + R_{\text{TH}} \cdot T_A \cdot P_{\text{EL}}[k-1]
\]

(9.47)

Auflösen nach \(T[k]\) ergibt
\[
T[k] = \frac{R_{\text{th}} \cdot T_A \cdot P_{\text{el}}[k] + R_{\text{th}} \cdot T_A \cdot P_{\text{el}}[k-1] - T[k-1] \cdot (T_A - R_{\text{th}} \cdot C_{\text{th}} \cdot 2)}{R_{\text{th}} \cdot C_{\text{th}} \cdot 2 + T_A}
\]

(9.48)

Auf Basis der - 20 dB Grenzfrequenz des analogen Systems wird die Abtastzeit \(T_A\) bestimmt. Das zeitkontinuierliche System hat einen einfachen reellen Pol in der negativen Halbebene, es ist demnach stabil. Deshalb ergibt sich der Frequenzgang zu
\[
G(\omega) = \left| \frac{G(s)}{P_{\text{EL}}(s)} \right|_{s=j\omega} = \frac{R_{\text{TH}}}{R_{\text{TH}} \cdot C_{\text{TH}} \cdot j \cdot \omega + 1}
\]

(9.49)

Um die - 20 dB Grenzfrequenz ausrechnen zu können, wird zunächst der Amplitudengang an der Stelle \(\omega = 0\) bestimmt.
\[
A(0) = R_{\text{TH}}
\]

(9.50)

Daraus ergibt sich die Grenzfrequenz aus der Bedingung
\[
A(\omega_0) = \left| \frac{R_{\text{TH}}}{R_{\text{TH}} \cdot C_{\text{TH}} \cdot j \cdot \omega_0 + 1} \right| = \frac{A(0)}{10} = \frac{R_{\text{TH}}}{10}
\]

(9.51)

Daraus ergibt sich die Bedingung
\[
100 = R_{\text{TH}}^2 \cdot C_{\text{TH}}^2 \cdot \omega_0^2 + 1
\]

(9.52)

Die Grenzfrequenz muss positiv sein, damit ergibt sich mit den Zahlenwerten aus der Aufgabenstellung
\[\omega_0 = \sqrt{\frac{100 - 1}{R_m \cdot C_m}} = \sqrt{99} \, \frac{\text{rad}}{1 \, \text{s}} = 9.9499 \, \frac{\text{rad}}{\text{s}} \approx 10 \, \frac{\text{rad}}{\text{s}} \]
(9.53)

Mit der berechneten Grenzfrequenz ergibt sich für die Abtastfrequenz

\[\omega_A = 2 \cdot \omega_0 = 20 \, \frac{\text{rad}}{\text{s}} = \frac{2 \cdot \pi}{T_A} \]
(9.54)

und damit für die Abtastzeit

\[T_A = \frac{2 \cdot \pi}{20} = \frac{\pi}{10} \, \text{s} \]
(9.55)

Zur Berechnung des Ausgangssignals \(T(k) \) muss das Eingangssignal diskretisiert und die Differenzengleichung unter Berücksichtigung der Anfangsbedingung rekursiv berechnet werden.

```
% Definition der Kennwerte
C = 0.2;
R = 5;
Ta = pi/10;

% Definition der Zahlenwerte und Initialisierung des Temperatursignals
t = 0:Ta:10;
k = 1:length(t);
T = zeros(size(t));

% Definition des Eingangssignals
pe0 = 2;
Tp = 0.5;
pe = pe0*(1-exp(-t/Tp));

% Übernahme der Anfangsbedingung
T(1) = 0;

% Berechnung der Temperaturwerte über die Differenzengleichung
for k = 2:length(t)
    T(k) = (R*Ta*pe(k)+R*Ta*pe(k-1)-T(k-1))/(R*C*2+Ta);
end;
```

Es ergibt sich folgendes Einschwingverhalten.

In der Grafik ist zum Vergleich das Signal dargestellt, dass sich bei einer 10-mal kleineren Abtastzeit ergibt. Beide Ergebnisse stimmen gut überein.
9.2.4 Bilineare Transformation mit Prewarping

Die in Abschnitt 9.2.3 beschriebene bilineare Transformation kann so modifiziert werden, dass sie die Frequenzverschiebung an einer Frequenz ω_0 kompensiert. Sie ergibt sich aus der Substitution

$$s = K \cdot \frac{z-1}{z+1}$$ \hspace{1cm} (9.56)

Dabei ist K ein noch zu bestimmender Parameter. Die Frequenzverzerrung ergibt sich nach einer Transformation in den Frequenzbereich mit $s = j\cdot\omega$ und $z = e^{j\cdot\Omega_P}$ zu

$$j\cdot\omega = K \cdot \frac{e^{j\cdot\Omega_P} - 1}{e^{j\cdot\Omega_P} + 1} = K \cdot \frac{e^{\frac{j\cdot\Omega_P}{2}} - e^{-\frac{j\cdot\Omega_P}{2}}}{e^{\frac{j\cdot\Omega_P}{2}} + e^{-\frac{j\cdot\Omega_P}{2}}} = K \cdot 2 \cdot j \cdot \frac{\sin\left(\frac{\Omega_P}{2}\right)}{\cos\left(\frac{\Omega_P}{2}\right)}$$ \hspace{1cm} (9.57)

Damit der Frequenzgang der zeitkontinuierlichen und zeitdiskreten Implementierung an der Frequenz ω_0 übereinstimmen, muss damit die Bedingung

$$\omega_0 = K \cdot \tan\left(\frac{\omega_0 \cdot T_A}{2}\right)$$ \hspace{1cm} (9.58)

beziehungsweise

$$K = \frac{\omega_0}{\tan\left(\frac{\omega_0 \cdot T_A}{2}\right)}$$ \hspace{1cm} (9.59)

erfüllt werden. Es ergibt sich die bilineare Transformation mit Prewarping:

$$s = K \cdot \frac{z-1}{z+1} = \frac{\omega_0}{\tan\left(\frac{\omega_0 \cdot T_A}{2}\right)} \cdot \frac{z-1}{z+1}$$ \hspace{1cm} (9.60)

Auch die bilineare Transformation mit Prewarping bildet die imaginäre Achse der s-Ebene auf den Einheitskreis der z-Ebene ab, die linke s-Halbebene wird in das Innere des Einheitskreises der z-Ebene abgebildet. Damit bleibt ein stabiles System bei der bilinearen Transformation mit Prewarping ein stabiles System.

Gleichung (9.57) wird dazu verwendet, den Zusammenhang zwischen der Kreisfrequenz ω des zeitkontinuierlichen Systems und der normierten Kreisfrequenz Ω_P des zeitdiskreten Systems mit Prewarping zu bestimmen.

$$\omega = K \cdot \tan\left(\frac{\Omega_P}{2}\right)$$ \hspace{1cm} (9.61)

Auflösen nach der normierten Kreisfrequenz Ω_P führt zu
\[\Omega_p = 2 \cdot \arctan \left(\frac{\omega}{K} \right) = 2 \cdot \arctan \left(\frac{\tan \left(\frac{\omega_0 \cdot T_A}{2} \right) \cdot \omega}{\omega_0} \right) \]
(9.62)

An der Frequenz \(\omega = \omega_0 \) vereinfacht sich der Ausdruck zu

\[\Omega_{p0} = 2 \cdot \arctan \left(\frac{\omega_0}{K} \right) = 2 \cdot \arctan \left(\frac{\omega_0 \cdot T_A}{2} \cdot \frac{\omega_0}{\omega_0} \right) = 2 \cdot \frac{\omega_0 \cdot T_A}{2} = \omega_0 \cdot T_A = \Omega_0 \]
(9.63)

und die beiden normierten Kreisfrequenzen \(\Omega_{p0} \) und \(\Omega_0 \) sind identisch. In Bild 9.9 wird die Verzerrung der Frequenzachse bei der bilinearen Transformation mit Prewarping für \(\Omega_0 = \pi/2 \) grafisch dargestellt.

Bild 9.9: Verzerrung der Frequenzachse durch die bilineare Transformation mit Prewarping für \(\Omega_0 = \pi/2 \)

Die nichtlineare Frequenzverzerrung wird mit Prewarping nicht generell aufgehoben, aber an der Stelle \(\omega_0 \) kompensiert.

Beispiel: Entwurf eines Tiefpasses erster Ordnung mit der bilinearen Transformation und Prewarping

Für das in Abschnitt 9.2.1 beschriebene PT1-Glied ergibt sich mit der bilinearen Transformation mit Prewarping die Übertragungsfunktion

\[G(z) = \frac{Y(z)}{U(z)} = G(s) \bigg|_{s = \frac{z - 1}{1 + T \cdot K}} = \frac{1}{1 + T \cdot K \cdot \frac{z - 1}{z + 1}} = \frac{z + 1}{z + 1 + T \cdot K \cdot z - T \cdot K} \]

\[= \frac{z + 1}{z \cdot (1 + T \cdot K) + 1 - T \cdot K} \]
(9.64)

Das System könnte mit der Differenzengleichung

\[y[k] = \frac{T_A \cdot u[k] + T_A \cdot u[k - 1] - (T_A - 2 \cdot T) \cdot y[k - 1]}{T_A + 2 \cdot T} \]
(9.65)

implementiert werden. Der Faktor \(K \) wird so gewählt, dass die 3-dB-Grenzfrequenzen des zeitkontinuierlichen und des zeitdiskreten Filters identisch sind. Mit \(\omega_G = 1/2 \text{ rad/s} \) und \(T_A = 1 \text{ s} \) ergibt sich für \(K \) der Wert
9.2 Konvertierung der Übertragungsfunktion $G(s)$ in die Übertragungsfunktion $G(z)$

\[K = \frac{\omega_G}{\tan\left(\frac{\omega_G \cdot T}{2}\right) \cdot 2 \cdot \tan\left(\frac{1}{4}\right)} = 1.9582 \]

(9.66)

Damit lautet die Übertragungsfunktion für das mit Prewarping entworfene zeitdiskrete Filter

\[G(z) = \frac{z + 1}{z \cdot (1 + K \cdot T) + 1 - K \cdot T} = \frac{z + 1}{4.9163 \cdot z - 2.9163} \]

(9.67)

Das Ergebnis kann mit der Berechnung der Amplitudengänge verifiziert werden.

Bild 9.10: Amplitudengang des zeitkontinuierlichen Tiefpasses und der über bilineare Transformation ohne und mit Prewarping entworfenen Systeme

An der Grenzfrequenz $\omega_G = 1/2$ rad/s stimmen der Amplitudengang des zeitkontinuierlichen Systems und des über Prewarping entworfenen Systems exakt überein. Im Gegensatz dazu weist das über bilineare Transformation ohne Prewarping entworfenen System eine Frequenzverschiebung auf.

Damit ergibt sich ein Verfahren zum Entwurf eines zeitdiskreten Systems mit der bilinearen Transformation und Prewarping, das in Tabelle 9.3 zusammengefasst ist.
Tabelle 9.3: Vorgehen zum Entwurf rekursiver Filter mit der bilinearen Transformation und Prewarping

<table>
<thead>
<tr>
<th>Schritt</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Entwurf eines zeitkontinuierlichen Filters G(s)</td>
</tr>
</tbody>
</table>
| 2 | Bestimmung der Konstanten K über die Frequenz \(\omega_0 \), bei der das zeitkontinuierliche und zeitdiskrete System denselben Frequenzgangswert aufweisen sollen.
\[
K = \frac{\omega_0}{\tan\left(\frac{\omega_0 \cdot T_A}{2}\right)}
\]

3	Transformation des zeitkontinuierlichen Filters G(s) in ein zeitdiskretes Filter mit der bilinearen Transformation, Durchführung der Substitution \(s = K \frac{z-1}{z+1} \)
	Aufstellen der Differenzengleichung durch Rücktransformation der Gleichung G(z) in den Zeitbereich \(G(z) = \frac{Y(z)}{U(z)} \)
4	Auflösen der Differenzengleichung nach y[k]
9.3 Transformation des Pol-Nullstellen-Diagramms

Bei dem impulsvarianten Entwurf in Abschnitt 9.2.1 ist die Partialbruchzerlegung der Übertragungsfunktion Ausgangspunkt für eine Transformation des zeitkontinuierlichen Systems in ein zeitdiskretes System. Dadurch werden die Pole des zeitkontinuierlichen Systems auf das zeitdiskrete System übertragen. Eine weitere Form der Transformation von Systemen aus dem zeitkontinuierlichen in den zeitdiskreten Bereich ergibt sich, wenn alle Nullstellen β_m und Pole α_n der Übertragungsfunktion

$$G(s) = K \frac{(s - \beta_1) \ldots (s - \beta_M)}{(s - \alpha_1) \ldots (s - \alpha_N)}$$ (9.68)

über die Transformation

$$z = e^{T_x s}$$ (9.69)

in den z-Bereich transformiert werden. Es ergibt sich ein System mit der Übertragungsfunktion

$$G(z) = K_2 \frac{(z - e^{\beta_1 T_x}) \ldots (z - e^{\beta_M T_x})}{(z - e^{\alpha_1 T_x}) \ldots (z - e^{\alpha_N T_x})}$$ (9.70)

Durch die Wahl eines geeigneten Verstärkungsfaktor K_2 kann sichergestellt werden, dass das zeitkontinuierliche und das zeitdiskrete System dieselbe stationäre Verstärkung aufweisen.
9.4 Zeitdiskrete Approximation im Zustandsraum

<<< wird später ergänzt >>>

9.4.1 Numerische Lösung mit dem Runge-Kutta-Verfahren

<<< wird später ergänzt >>>

9.4.2 Zeitdiskrete Lösung der Zustandsdifferentialgleichung

<<< wird später ergänzt >>>
9.5 Übungsaufgaben – Zeitdiskrete Approximation zeitkontinuierlicher Systeme

9.5.1 Sprunginvarianter Systementwurf

Ein System mit der Übertragungsfunktion
\[G(s) = \frac{1}{(3s + 1)(5s + 1)} \]
soll als zeitdiskretes Filter implementiert werden, dessen Sprungantwort \(h[k] \) an den Stellen \(k \cdot T_A \) dieselben Zahlenwerte aufweist wie die Sprungantwort \(h(t) \) des analogen Systems. Das zeitdiskrete System arbeitet mit einer Abtastzeit \(T_A = 1 \). Da die Sprungantworten der beiden Filter an den Stellen \(k \cdot T_A \) exakt übereinstimmen sollen, muss der Filterentwurf durch Abtasten der Sprungantwort erfolgen.

a) Geben Sie die Sprungantwort \(h(t) \) des zeitkontinuierlichen Filters mit der Übertragungsfunktion \(G(s) \) an.

b) Stellen Sie die Sprungantwort \(h[k] \) desFilters als Gleichung dar, der an den Stellen \(k \cdot T_A \) dieselben Zahlenwerte aufweist wie die Sprungantwort \(h(t) \) des analogen Systems.

c) Wie lautet die Übertragungsfunktion \(G(z) \) des entsprechenden zeitdiskreten Systems?

d) Berechnen Sie die Impulsantworten \(g(t) \) und \(g[k] \) der beiden Filter. Skizzieren Sie das Ergebnis.

e) Warum können die Impulsantworten \(g(t) \) und \(g[k] \) oder die Sprungantworten \(h(t) \) und \(h[k] \) übereinstimmen, nicht beide gleichzeitig?

9.5.2 Tiefpass-Filterentwurf über bilineare Transformation

Ein analoges Filter mit der Übertragungsfunktion
\[G(s) = \frac{1}{1 + T \cdot s} \]

soll mithilfe der bilinearen Transformation in ein zeitdiskretes Tiefpass-Filter überführt werden. Die 3dB-Grenzfrequenz des zeitdiskreten Tiefpasses soll \(\omega_G = 0.4996 \) Hz sein. Die Abtastfrequenz ist \(\omega_A = 2 \cdot \pi \cdot 5 \) Hz.

a) Welche Grenzfrequenz und welche Zeitkonstante muss das analoge Filter besitzen?

b) Berechnen Sie die Übertragungsfunktion \(G(z) \) des zeitdiskreten Tiefpasses.

c) Bestimmen Sie eine Differenzengleichung zur Realisierung des zeitdiskreten Tiefpasses. Stellen Sie die Differenzengleichung so um, dass sich auf der linken Seite lediglich der aktuelle Wert des Ausgangssignals \(y[k] \) befindet.

d) Berechnen Sie den Amplitudengang des zeitdiskreten Filters. Welchen Wert nimmt der Amplitudengang an der Stelle \(\omega_G = 0.4996 \) Hz an?
9.5.3 Hochpass-Filterentwurf über bilineare Transformation
Gegeben ist ein Filter mit der Übertragungsfunktion $G(s)$.

$$G(s) = \frac{6 \cdot s}{1 + 3 \cdot s}$$

a) Um was für einen Filter handelt es sich? Begründen Sie Ihre Antwort.
Der Filter soll mit Hilfe der bilinearen Transformation in ein digitales Filter überführt werden. Das zeitdiskrete System wird in festen Zeitintervallen $T_A = 1$ abgetastet.

b) Bestimmen Sie die z-Transformierte $G(z)$ des zeitdiskreten Filters.

c) Berechnen Sie den Amplitudengang $A(\Omega)$ des zeitdiskreten Filters.

d) Berechnen Sie aus dem Amplitudengang $A(\Omega)$ die Frequenz Ω_G, bei der der Amplitudengang -3 dB beträgt. Bei welcher Frequenz ω_G weist der Amplitudengang des analogen Filters einen Wert von -3 dB auf?

e) Geben Sie Differenzengleichung an, mit der das Filter implementiert werden kann.

9.5.4 Approximation eines zeitkontinuierlichen Systems
Gegeben ist ein System G, das durch die Differentialgleichung

$$2 \cdot \frac{dy}{dt} + y(t) = \frac{du(t)}{dt}$$

beschrieben wird. Das System zum Zeitpunkt $t = 0$ im Ruhezustand, es gilt:

$$\left. \frac{dy}{dt} \right|_{t=0} = 0 \quad y(0) = 0 \quad \left. \frac{du}{dt} \right|_{t=0} = 0$$

a) Berechnen Sie die Laplace-Transformierte der Impulsantwort $g(t)$ des Systems.

b) Bestimmen Sie die zugehörige Impulsantwort $g(t)$ im Zeitbereich.

Das Filter soll mit der bilinearen Transformation in ein digitales Filter überführt werden. Das digitale System hat eine Abtastfrequenz $f_A = 5 \text{ Hz}$.

c) Berechnen Sie die z-Transformierte $G(z)$ des digitalen Filters

d) Bestimmen Sie Impulsantwort $g[k]$ des digitalen Filters.

Das digitale Filter soll als Software-Algorithmus programmiert werden.

e) Bestimmen Sie ausgehend von der z-Transformierten $G(z)$ die zugehörige Differenzengleichung und lösen Sie nach $y[k]$ auf.

9.5.5 Vergleich unterschiedlicher Systementwürfe
Ein analoges System mit der Übertragungsfunktion

$$G(s) = \frac{1}{1 + 5 \cdot s}$$

und einer Abtastzeit $T_A = 1$ soll über eine Differenzengleichung simuliert werden.

a) Geben Sie die Übertragungsfunktion des zeitdiskreten Systems $G_d(z)$ an, das sich aus der bilinearen Transformation ergibt.
b) Welche Systemeigenschaften des Systems $G_B(z)$ lassen sich an der Übertragungsfunktion ablesen?

c) Bestimmen Sie den Frequenzgang des Systems $G_B(\Omega)$.

d) Berechnen Sie die 3-dB-Grenzfrequenz Ω_B des Systems $G_B(z)$.

e) Geben Sie eine Differenzengleichung zur Realisierung des Systems $G_B(z)$ an.

Alternativ kann ein impulsinvarianter Entwurf des Systems durchgeführt werden.

f) Stellen Sie eine Übertragungsfunktion $G_I(z)$ des realen zeitdiskreten Filters auf.

Die folgenden Diagramme stellen die unterschiedlichen Impulsantworten, Pol-Nullstellen-Diagramme und Amplitudengänge dar.

g) Ordnen Sie die grafischen Darstellungen den beiden zeitdiskreten Systemen zu. Begründen Sie Ihr Vorgehen.
9.5.6 Filterentwurf mit und ohne Prewarping

Ein zeitkontinuierliches Butterworth-Filter zweiter Ordnung mit der Übertragungsfunktion

\[G(s) = \frac{\omega_G^2}{s^2 + \sqrt{2} \cdot s \cdot \omega_G + \omega_G^2} \]

und der Grenzfrequenz \(\omega_G = 2.5 \text{ krad/s} \) soll über die bilineare Transformation in ein zeitdiskretes Filter überführt werden. Dabei wird die bilineare Transformation mit und ohne Prewarping miteinander verglichen. Die Abtastfrequenz des zeitdiskreten Systems beträgt \(\omega_A = 10 \text{ krad/s} \).

a) Bestimmen Sie die z-Transformierte des zeitdiskreten Systems \(G_1(z) \), das bei bilinearer Transformation ohne Prewarping entsteht.

b) Tragen Sie die Pole und Nullstellen in das linke vorgegebene Diagramm ein.

c) Bestimmen Sie die z-Transformierte des zeitdiskreten Systems \(G_2(z) \), das bei bilinearer Transformation mit Prewarping und \(\omega_0 = \omega_G \) entsteht.

d) Tragen Sie die Pole und Nullstellen in das rechte vorgegebene Diagramm ein.

In der folgenden Abbildung sind zwei Amplitudengänge und zwei Impulsantworten dargestellt.

e) Ordnen Sie die Impulsantworten und Amplitudengänge den beiden Filtern \(G_1(z) \) und \(G_2(z) \) zu.
9.6 Musterlösungen – Zeitdiskrete Approximation zeitkontinuierlicher Systeme

9.6.1 Sprunginvarianter Systementwurf

a) Die Sprungantwort des Systems mit der Übertragungsfunktion

\[G(s) = \frac{1}{(3 \cdot s + 1) \cdot (5 \cdot s + 1)} \]

hat die Laplace-Transformierte

\[H(s) = \frac{1}{s \cdot (3 \cdot s + 1) \cdot (5 \cdot s + 1)} = \frac{A_1}{s} + \frac{A_2}{3 \cdot s + 1} + \frac{A_3}{5 \cdot s + 1} \]

Die Koeffizienten der Partialbrüche errechnen sich zu

\[A_1 = \frac{1}{(3 \cdot s + 1) \cdot (5 \cdot s + 1)} \bigg|_{s=0} = 1 \]

\[A_2 = \frac{1}{s \cdot (5 \cdot s + 1)} \bigg|_{s=-\frac{1}{3}} = \frac{1}{-\frac{1}{3} \cdot \left(-\frac{2}{3}\right)} = \frac{9}{2} \]

\[A_3 = \frac{1}{s \cdot (3 \cdot s + 1)} \bigg|_{s=-\frac{1}{5}} = \frac{1}{-\frac{1}{5} \cdot \frac{2}{5}} = -\frac{25}{2} \]

und die Sprungantwort lautet

\[h(t) = \left(1 + \frac{9}{2} \cdot \frac{1}{3} \cdot e^{\frac{t}{3}} - \frac{25}{2} \cdot \frac{1}{5} \cdot e^{\frac{t}{5}}\right) \cdot \sigma(t) = \left(1 + \frac{3}{2} \cdot e^{\frac{t}{2}} - \frac{5}{2} \cdot e^{\frac{t}{5}}\right) \cdot \sigma(t) \]

b) Mit \(T_A = 1 \) ergibt sich direkt

\[h[k] = \left(1 + \frac{3}{2} \cdot e^{\frac{k}{2}} - \frac{5}{2} \cdot e^{\frac{k}{5}}\right) \cdot \sigma[k] \]

c) Zur einfacheren Transformation in den z-Bereich wird die Sprungantwort umgeformt zu

\[h[k] = \left(1 + \frac{3}{2} \cdot \left(e^{\frac{k}{2}}\right)^k - \frac{5}{2} \cdot \left(e^{\frac{k}{5}}\right)^k\right) \cdot \sigma[k] = \left(1 + \frac{3}{2} \cdot \left(e^{\frac{k}{2}}\right)^k - \frac{5}{2} \cdot \left(e^{\frac{k}{5}}\right)^k\right) \cdot \sigma[k] \]

Es ergibt sich die z-Transformierte der Sprungantwort

\[H(z) = \frac{z}{z-1} + \frac{3}{2} \cdot \frac{z}{z-e^{\frac{k}{2}}} - \frac{5}{2} \cdot \frac{z}{z-e^{\frac{k}{5}}} \]

und die Übertragungsfunktion des zeitdiskreten Systems
d) Die Impulsantwort des zeitdiskreten Systems lautet

\[g[k] = h[k] - h[k-1] = \left(1 + \frac{3}{2} e^{-\frac{k}{3}} - \frac{5}{2} e^{-\frac{k}{5}} \right) \cdot \sigma[k] - \left(1 + \frac{3}{2} e^{-\frac{k-1}{3}} - \frac{5}{2} e^{-\frac{k-1}{5}} \right) \cdot \sigma[k-1] \]

\[= \delta[k] + \frac{3}{2} e^{-\frac{k}{3}} \cdot \sigma[k] - \frac{3}{2} e^{-\frac{k-1}{3}} \cdot \sigma[k-1] - \frac{5}{2} e^{-\frac{k}{5}} \cdot \sigma[k] + \frac{5}{2} e^{-\frac{k-1}{5}} \cdot \sigma[k-1] \]

Zur Berechnung der Impulsantwort des zeitkontinuierlichen Systems wird eine Partialbruchzerlegung durchgeführt. Es ergibt sich der Ansatz

\[G(s) = \frac{1}{(3 \cdot s + 1) \cdot (5 \cdot s + 1)} = \frac{A_1}{3 \cdot s + 1} + \frac{A_2}{5 \cdot s + 1} \]

mit den Koeffizienten

\[A_1 = \left. \frac{1}{5 \cdot s + 1} \right|_{s = -\frac{1}{3}} = -\frac{3}{2} \]

\[A_2 = \left. \frac{1}{3 \cdot s + 1} \right|_{s = -\frac{1}{5}} = \frac{5}{2} \]

Daraus wird die Impulsantwort \(g(t) \) bestimmt zu

\[g(t) = \left(-\frac{1}{2} e^{\frac{t}{3}} + \frac{1}{2} e^{\frac{t}{5}} \right) \cdot \sigma(t) \]

Beide Impulsantworten sind in dem folgenden Bild dargestellt.

e) Das Integral der zeitkontinuierlichen Impulsantwort \(g(t) \) ergibt die Sprungantwort \(h(t) \). Im zeitdiskreten Bereich kann dieses Integral nur genähert werden, sodass bei identischen Impulsantworten \(g[k] = g(k \cdot T_A) \) die Sprungantworten voneinander abweichen. Stimmen die Sprungantworten \(h[k] = h(k \cdot T_A) \) überein, ergibt sich im zeitkontinuierlichen Bereich die Impulsantwort über die Ableitung der Sprungantwort. Auch diese Operation kann im zeitdiskreten Bereich nur genähert werden. Damit können selbst bei einer Abtastzeit \(T_A = 1 \) nur die Impulsantworten \(g(t) \) und \(g[k] \) oder die Sprungantworten \(h(t) \) und \(h[k] \) übereinstimmen.
9.6.2 Tiefpass-Filterentwurf über bilineare Transformation

a) Das zeitdiskrete Filter soll eine Grenzfrequenz von \(\omega_g = 0.4996 \) Hz aufweisen. Wegen der Frequenzverschiebung bei der bilinearen Transformation und einer Abtastzeit von \(T_A = 0.2 \) muss das analoge Filter ausgelegt werden auf eine Grenzfrequenz von

\[
\omega_{ga} = \frac{2}{T_A} \tan \left(\frac{\Omega}{2} \right) = \frac{2}{0.2} \tan \left(\frac{0.4996 \cdot 0.2}{2} \right) = 0.5
\]

Daraus ergibt sich die Zeitkonstante von

\[
T = \frac{1}{\omega_{ga}} = 2
\]

b) Die Übertragungsfunktion des zeitdiskreten Systems ergibt sich bei der bilinearen Transformation aus

\[
G(z) = G(s) \bigg|_{s \to z^{-1} = \frac{1}{1 + 2 \cdot \frac{z-1}{z+1} \cdot \frac{z-1}{z+1}}} = \frac{1}{1 + 20 \cdot \frac{z-1}{z+1}} = \frac{z + 1}{21 \cdot z - 19}
\]

\[
Y(z) \cdot (21 - 19 \cdot z^{-1}) = U(z) \cdot (1 + z^{-1})
\]

Mit der Verschiebungsregeln ergibt sich die Differenzengleichung

\[
21 \cdot y[k] - 19 \cdot y[k - 1] = u[k] + u[k - 1]
\]

Auflösen nach \(y[k] \) führt zu

\[
y[k] = \frac{u[k] + u[k - 1] + 19 \cdot y[k - 1]}{21}
\]

d) Die Übertragungsfunktion des Systems besitzt einen Pol an der Stelle

\[
\alpha = \frac{19}{21}
\]

Er liegt im Einheitskreis, so dass das System stabil ist. Damit kann der Frequenzgang berechnet werden über

\[
G(\Omega) = G(z) \bigg|_{z = e^{\jmath \Omega}} = \frac{e^{\jmath \Omega} + 1}{21 \cdot e^{\jmath \Omega} - 19} = \frac{\cos(\Omega) + 1}{21 \cdot \cos(\Omega) - 19} + \jmath \cdot \frac{\sin(\Omega)}{21 \cdot \cos(\Omega) - 19}
\]

Der Amplitudengang ergibt sich aus dem Betrag des Frequenzgangs zu

\[
A(\Omega) = \sqrt{\frac{(\cos(\Omega) + 1)^2 + \sin^2(\Omega)}{(21 \cdot \cos(\Omega) - 19)^2 + 21^2 \cdot \sin^2(\Omega)}} = \frac{\sqrt{2 + 2 \cdot \cos(\Omega)}}{\sqrt{802 - 798 \cdot \cos(\Omega)}}
\]

An der Stelle \(\Omega_g = \omega_g \cdot T_A = 0.0999 \) ergibt sich erwartungsgemäß der Frequenzgang

\[
A(\Omega_g) = \frac{1}{\sqrt{2}}
\]
9.6.3 Hochpass-Filterentwurf über bilineare Transformation

a) Das Filter kann zerlegt werden in die Form

\[G(s) = 2 \cdot \frac{3 \cdot s}{1 + 3 \cdot s} \]

Es ist ein Hochpass-Filter mit einer Grenzfrequenz von \(\omega_G = \frac{1}{3} \) und \(k = 2 \).

b) Bestimmung von \(G(z) \) durch bilineare Transformation, \(TA = 1 \)

\[
G(z) = 2 \cdot \frac{3 \cdot s}{1 + 3 \cdot s} \bigg|_{s = \frac{z - 1}{z + 1}} = 2 \cdot \frac{3 \cdot \frac{z - 1}{z + 1}}{1 + 3 \cdot \frac{z - 1}{z + 1}} = 12 \cdot \frac{z - 1}{z + 1 + 6 \cdot z - 6} = 12 \cdot \frac{z - 1}{7 \cdot z - 5} = 12 \cdot \frac{z - 1}{z - 5/7}
\]

c) Der Pol der Übertragungsfunktion liegt bei \(z = 5/7 \) und liegt damit innerhalb des Einheitskreises. Das System ist somit stabil und der Frequenzgang ergibt sich aus

\[
G(\Omega) = \frac{12 \cdot \frac{z - 1}{z - 5/7}}{z - 1} = 12 \cdot \frac{\Omega^2 - e^{-j \Omega}}{\cos(\Omega) + j \cdot \sin(\Omega) - 5/7} = \frac{24 \cdot e^{j \Omega}}{\cos(\Omega) - 5/7 + j \cdot \sin(\Omega)}
\]

Der Amplitudengang errechnet sich aus dem Betrag des Frequenzgangs zu

\[
A(\Omega) = \frac{\sqrt{144 - 144 \cdot \cos(\Omega)}}{\sqrt{37 - 35 \cdot \cos(\Omega)}}
\]

d) Das zeitdiskrete Filter wird über die bilineare Transformation berechnet. Weiterhin kann der Amplitudengang des zeitkontinuierlichen Filters an der Stelle \(\omega_G \) berechnet werden zu

\[
A(\omega_G) = \frac{6 \cdot \omega_G}{\sqrt{1 + 9 \cdot \omega_G^2}} = \frac{1}{\sqrt{2}}
\]

Auflösen nach \(\omega_G \) ergibt

\[
\omega_G = \frac{2}{\sqrt{63}} = 0.178
\]

Damit kann die Grenzfrequenz des \(\Omega_G \) berechnet werden zu

\[
\Omega_G = 2 \cdot \arctan \left(\frac{\omega_G \cdot TA}{2} \right) = 2 \cdot \arctan \left(\frac{0.178}{2} \right) = 0.177
\]

e) Die Übertragungsfunktion im z-Bereich

\[
G(z) = \frac{Y(z)}{U(z)} = \frac{12 \cdot \frac{z - 1}{z - 5/7}}{7 \cdot \frac{z - 1}{z - 5/7} \cdot \frac{1 - z^{-1}}{7 - 5 \cdot z^{-1}}} = \frac{12 \cdot \frac{z - 1}{z - 5/7}}{7 - 5 \cdot z^{-1}}
\]

kann umgeformt werden zu

\[
Y(z) \cdot (7 - 5 \cdot z^{-1}) = (12 - 12 \cdot z^{-1}) \cdot U(z)
\]

Rücktransformation führt zu der Gleichung

\[
7 \cdot y[k] - 5 \cdot y[k-1] = 12 \cdot u[k] - 12 \cdot u[k-1]
\]

beziehungsweise
9.6 Musterlösungen – Zeitdiskrete Approximation zeitkontinuierlicher Systeme

9.6.4 Approximation eines zeitkontinuierlichen Systems

a) Die Differentialgleichung kann wegen der verschwindenden Anfangsbedingungen direkt in den Laplace-Bereich transformiert werden als

\[2 \cdot s \cdot Y(s) + Y(s) = s \cdot U(s) \]

und es ergibt sich die Übertragungsfunktion

\[G(s) = \frac{Y(s)}{U(s)} = \frac{s}{2 \cdot s + 1} = \frac{1}{2} \cdot \frac{2 \cdot s}{2 \cdot s + 1} \]

b) Aus den Korrespondenzen der Laplace-Transformation ergibt sich

\[g(t) = \frac{1}{2} \left(\delta(t) - \frac{1}{2} \cdot e^{\frac{t}{2}} \cdot \sigma(t) \right) \]

c) Umrechnung des Filters durch bilineare Transformation

\[s = \frac{2 \cdot z}{T_A} - \frac{1}{z} \]

führte zu der Übertragungsfunktion

\[G(z) = \frac{Y(z)}{U(z)} = \frac{s}{2 \cdot s + 1} \bigg|_{s = \frac{2 \cdot z}{T_A} - \frac{1}{z}} = \frac{2 \cdot z - 2}{T_A \cdot z + T_A + 4 \cdot z - 4} = \frac{2 \cdot z - 2}{(T_A + 4) \cdot z + (T_A - 4)} \]

d) Berechnung der Impulsantwort \(g(k) \) durch Zerlegung von \(G(z) \)

\[G(z) = \frac{2 \cdot z - 2}{(T + 4) \cdot z + (T - 4)} = \frac{1}{(T + 4)} \cdot \frac{2 \cdot z}{z + \left(\frac{T - 4}{T + 4}\right)} - \frac{1}{(T + 4)} \cdot \frac{2 \cdot z}{z + \left(\frac{T - 4}{T + 4}\right)} \cdot z^{-1} = \frac{2 - 2 \cdot z^{-1}}{(0.2 + 4)} \cdot \frac{z}{1 - 0.905z^{-1}} \]

Mit \(T_A = 0.2 \) errechnet sich \(G(z) \) zu

\[G(z) = \frac{2 - 2 \cdot z^{-1}}{(0.2 + 4)} \cdot \frac{z}{(0.2 + 4)} = \frac{2 - 2 \cdot z^{-1}}{4.2} \cdot \frac{z}{0.2 + 4} - \frac{9.05}{0.2 + 4} \]

Mit den Korrespondenzen zur \(z \)-Transformation ergibt sich

\[g[k] = 0.48 \cdot 0.905^k \cdot \sigma[k] - 0.48 \cdot 0.905^{k-1} \cdot \sigma[k - 1] \]

e) Bestimmung der Differenzengleichung aus der Übertragungsfunktion \(G(z) \)

\[G(z) = \frac{Y(z)}{U(z)} = \frac{2 \cdot z - 2}{4.2 \cdot z - 3.8} \]

Umformung ergibt

\[Y(z \cdot (4.2 \cdot z - 3.8)) = (2 \cdot z - 2) \cdot U(z) \]

beziehungsweise
$Y(z) \cdot (4.2 - 3.8 \cdot z^{-1}) = (2 - 2 \cdot z^{-1}) \cdot U(z)$

Rücktransformation mit der Verschiebungsregel ergibt die Differenzengleichung

$4.2 \cdot y[k] - 3.8 \cdot y[k-1] = 2 \cdot u[k] - 2 \cdot u[k-1]$

Auflösen nach $y(k)$ liefert auf das Ergebnis

$y(k) = \frac{1}{4.2} \cdot (2 \cdot u[k] - 2 \cdot u[k-1] + 3.8 \cdot y[k-1])$

9.6.5 Vergleich unterschiedlicher Systementwürfe

a) Die bilineare Transformation von $G(s)$ führt zu

$$G_b(z) = \frac{1}{1 + 5 \cdot s} = \frac{1}{1 + 5 \cdot \frac{2}{T_A} \cdot \frac{z-1}{z+1}} = \frac{z+1}{z+10 \cdot z-10} = \frac{z+1}{11 \cdot z-9}$$

b) Das System besitzt folgende Eigenschaften:

<table>
<thead>
<tr>
<th>Eigenschaft</th>
<th>Übertragungsfunktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kausalität</td>
<td>Zählergrad $M \leq$ Nennergrad N</td>
</tr>
<tr>
<td>Sprungfähigkeit</td>
<td>Zählergrad $M = Nennergrad N$</td>
</tr>
<tr>
<td>Asymptotische Stabilität</td>
<td>Pol innerhalb des Einheitskreises</td>
</tr>
<tr>
<td>Keine Schwingungsneigung</td>
<td>positiver reeller Pol</td>
</tr>
<tr>
<td>Infinite-Impulse-Response (IIR-System)</td>
<td>Pol nicht im Koordinatenursprung</td>
</tr>
<tr>
<td>Grenzstabil invertierbares System</td>
<td>Nullstellen auf dem Einheitskreis</td>
</tr>
<tr>
<td>Verstärkung</td>
<td>$G(z = 1) = 1$</td>
</tr>
</tbody>
</table>

c) Frequenzgang des Systems errechnet sich wegen der Stabilität des Systems zu

$$G_b(\Omega) = G_b(z)|_{z=e^{j\omega}} = \frac{e^{j\omega} + 1}{11 \cdot e^{j\omega} - 9}$$

d) Die Grenzfrequenz des über bilineare Transformation entwickelten zeitdiskreten Systems Ω_{BG} ergibt sich aus der 3-dB-Grenzfrequenz des analogen Systems

$$\omega_b = \frac{1}{T} = \frac{1}{5}$$

zu

$$\Omega_{BG} = 2 \cdot \arctan\left(\frac{\omega_b \cdot T_A}{2}\right) = 2 \cdot \arctan\left(\frac{1 \cdot 5 \cdot 2}{2}\right) = 0.1993$$
c) Ausmultiplizieren der Übertragungsfunktion

\[Y(z) \cdot (11 \cdot z - 9) = U(z) \cdot (z + 1) \]

Division durch \(z \)

\[Y(z) \cdot (11 - 9 \cdot z^{-1}) = U(z) \cdot (1 + z^{-1}) \]

und Rücktransformation in den Zeitbereich

\[11 \cdot y[k] - 9 \cdot y[k-1] = u[k] + u[k-1] \]

führt zu der Differenzengleichung

\[y[k] = \frac{u[k] + u[k-1] + 9 \cdot y[k-1]}{11} \]

f) Die Übertragungsfunktion kann dargestellt werden als

\[G(s) = \frac{1}{1 + 5 \cdot s} = \frac{1}{5} \cdot \frac{1}{s + 0.2} \]

Daraus ergibt sich die Übertragungsfunktion des impulsinvarianten Systems von

\[G_i(z) = A_n \cdot \frac{1}{1 - e^{-\beta \cdot T} \cdot z^{-1}} = \frac{1}{5} \cdot \frac{1}{1 - e^{-0.2 \cdot T} \cdot z^{-1}} = \frac{1}{5} \cdot \frac{z}{z - 0.8187} \]

g) Für das bilineare System ergibt sich über die Differenzengleichung

\[y[k] = \frac{u[k] + u[k-1] + 9 \cdot y[k-1]}{11} \]

die Impulsantwort an der Stelle \(k = 0 \) zu

\[g[0] = \frac{\delta[0] + \delta[0-1] + 9 \cdot g[0-1]}{11} = \frac{1}{11} \]

Damit ist die Impulsantwort \(g_2 \) die Impulsantwort des Systems \(G_b \).

Wegen der Nullstelle \(\beta = -1 \) ist das Pol-Nullstellen-Diagramm 2 das Pol-Nullstellen-Diagramm von dem System \(G_b \).

Der Amplitudengang des Systems \(G_b \) weist an der Stelle \(\Omega = \pi \) eine Nullstelle auf. Damit ist der Amplitudengang \(A_1 \) der Amplitudengang von dem System \(G_b \).
9.6.6 Filterentwurf mit und ohne Prewarping

a) Bei der bilinearen Transformation ohne Prewarping wird folgende Substitution vorgenommen:

\[s = \frac{2}{T_a} \frac{z - 1}{z + 1} = \frac{2 \cdot \alpha}{\pi} \cdot \frac{z - 1}{z + 1} = \frac{\omega_a}{\pi} \cdot \frac{z - 1}{z + 1} = 10 \cdot \frac{\omega_a}{\pi} \cdot \frac{z - 1}{z + 1} = \omega_a \cdot K_1 \cdot \frac{z - 1}{z + 1} \]

Damit ergibt sich für die Übertragungsfunktion

\[G_1(z) = G(s) \bigg|_{s = \omega_a \cdot \frac{z - 1}{z + 1}} = \frac{\omega_a^2}{(z - 1)^2 + \sqrt{2} \cdot \omega_a \cdot K_1 \cdot (z^2 - 1) + (z + 1)^2} \]

\[= \frac{(z + 1)^2}{K_1^2 \cdot (z - 1)^2 + \sqrt{2} \cdot K_1 \cdot (z^2 - 1) + (z + 1)^2} \]

Mit den angegebenen Werten ist

\[K_1 = \frac{4}{\pi} = 1.2732 \]

und die Übertragungsfunktion lautet

\[G_1(z) = \frac{(z + 1)^2}{\left(\frac{4}{\pi} \right)^2 + \sqrt{2} \cdot \frac{4}{\pi} + 1 \cdot z^2 + \left(2 - 2 \cdot \frac{4}{\pi} \right) \cdot z + \left(\frac{4}{\pi} \right)^2 - \sqrt{2} \cdot \frac{4}{\pi} + 1 \}

\[= \frac{z^2 + 2 \cdot z + 1}{4.4218 \cdot z^2 - 1.2423 \cdot z + 0.8205} \]

b) Das System hat zwei reelle Nullstellen bei \(\beta = -1 \). Die Polstellen errechnen sich mit der Gleichung

\[z^2 + \frac{2 - 2 \cdot K_1^2}{K_1^2 + \sqrt{2} \cdot K_1 + 1} \cdot z + \frac{K_1^2 - \sqrt{2} \cdot K_1 + 1}{K_1^2 + \sqrt{2} \cdot K_1 + 1} = 0 \]

zu

\[z_{12} = \frac{1}{K_1^2 + \sqrt{2} \cdot K_1 + 1} \left(K_1^2 - 1 \pm \sqrt{(K_1^2 - 1)^2 - (K_1^2 + \sqrt{2} \cdot K_1 - 1) \cdot (K_1^2 + \sqrt{2} \cdot K_1 + 1)} \right) \]

Die Pole liegen damit an den Stellen

\[\alpha_{12} = 0.1405 \pm 0.4072 \]

Damit ergibt sich das linke Pol-Nullstellen-Diagramm:
c) Bei der bilinearen Transformation mit Prewarping wird die Substitution

\[
s = \tan\left(\frac{\omega_o \cdot T_a}{2}\right) \frac{z - 1}{z + 1} = \omega_o \cdot K_2 \cdot \frac{z - 1}{z + 1}
\]
durchgeführt. Die Rechnung von Aufgabenteil a) ändert sich demnach nicht, es wird nur die Konstante \(K_1\) durch \(K_2\) ersetzt.

Mit den angegebenen Werten ist

\[
K_2 = \frac{1}{\tan\left(\frac{\omega_o \cdot T_a}{2 \cdot \pi}\right)} = \frac{1}{\tan\left(\frac{\omega_o}{\omega_o}\right)} = \frac{1}{\tan\left(\frac{\pi}{4}\right)} = 1
\]

und die Übertragungsfunktion lautet

\[
G_2(z) = \frac{(z + 1)^2}{\left(K_2^2 + \sqrt{2} \cdot K_2 + 1\right) \cdot z^2 + \left(2 - K_2^2\right) \cdot z + \left(K_2^2 - \sqrt{2} \cdot K_2 + 1\right)}
\]

\[
= \frac{(z + 1)^2}{\left(1 + \sqrt{2} \cdot 1 + 1\right) \cdot z^2 + \left(2 - 2 \cdot 1\right) \cdot z + \left(1 - \sqrt{2} \cdot 1 + 1\right)} = \frac{z^2 + 2 \cdot z + 1}{3.4142 \cdot z^2 + 0.5858}
\]

d) Die Nullstellen sind von der Änderung nicht betroffen. Die Pole errechnen sich zu

\[
z_{12} = \frac{1}{K_2^2 + \sqrt{2} \cdot K_2 + 1} \left(\left(K_2^2 - 1\right) \pm \sqrt{\left(K_2^2 - 1\right)^2 - K_2^2 + \sqrt{2} \cdot K_2 - 1}\right)
\]

Die Pole liegen damit an den Stellen

\[
\alpha_{12} = \pm j \cdot 0.4142
\]

Damit ergibt sich das oben bereits gezeigte rechte Pol-Nullstellen-Diagramm.

e) Die richtige Lösung bezüglich Amplitudengang ergibt sich aus der - 3 dB Grenzfrequenz. Bei Prewarping bleibt die bei 2500 rad/s, damit gehört Lösung B zum Filterentwurf mit Prewarping.

10 Entwurf zeitdiskreter Filter

Filter können mit unterschiedlichen Strukturen realisiert werden. Für die Realisierung rekursiver IIR-Systeme werden die Direktstruktur, die Kaskadenstruktur und die Parallelstruktur erläutert. Außerdem wird auf die Realisierung von FIR-Filtern als Kaskadenstruktur eingegangen.

Das Kapitel schließt mit einem Vergleich eines zeitdiskreten und eines zeitkontinuierlichen Filters sowie mit Übungsaufgaben zum Entwurf zeitdiskreter Filter.

10.1 Definition idealer Filter über den Amplitudengang

Bei der Herleitung des Frequenzgangs in Kapitel 8.1.3 wird gezeigt, dass sich das Spektrum des Ausgangssignals $Y(\Omega)$ aus dem Produkt der Spektren von Impulsantwort $G(\Omega)$ und Eingangssignal $U(\Omega)$ ergibt.

\[Y(\Omega) = G(\Omega) \cdot X(\Omega) \quad (10.1) \]

Der Frequenzgang $G(\Omega)$ kann dazu genutzt werden, Spektralannteile zu unterdrücken oder zu verstärken. Die Verstärkung beziehungsweise die Unterdrückung von Frequenzbereichen kann am Amplitudengang abgelesen werden. Analog zu zeitkontinuierlichen Filtern ergeben sich vier unterschiedliche ideale Filter, nämlich Tiefpass, Hochpass, Bandpass und Bandsperre. Im Gegensatz zu zeitkontinuierlichen Systemen muss dabei jedoch auf die Periodizität des Frequenzgangs geachtet werden.

10.1.1 Idealer Tiefpass

Das ideale Tiefpass-Filter weist eine Übertragungsfunktion auf, die niederfrequente Anteile bis zu einer Grenzfrequenz Ω_0 ungedämpft durchlässt und hochfrequente Anteile oberhalb der Grenzfrequenz Ω_0 sperrt. Die Übertragungsfunktion des idealen Tiefpass-Filters lautet

\[G_{TP}(\Omega) = \begin{cases} 1 & \text{für } |\Omega| < \Omega_0 \\ 0 & \text{für } \Omega_0 < |\Omega| < \pi \end{cases} \quad (10.2) \]

Die Impulsantwort des idealen Tiefpass-Filters lautet

\[g_{TP}[k] = \frac{\sin(\Omega_0 \cdot k)}{\pi \cdot k} \quad (10.3) \]

Amplitudengang und Impulsantwort des idealen Tiefpass-Filters sind in Bild 10.1 dargestellt.
Die Impulsantwort $g_{TP}[k]$ ist nicht auf den Bereich $k \geq 0$ beschränkt, sie ist demnach nicht kausal und besitzt eine unendliche Länge. Das ideale Tiefpass-Filter ist deshalb technisch nicht realisierbar.

Neben der Eigenschaft der frequenzselektiven Dämpfung muss das ideale Tiefpass-Filter zumindest im Durchlassbereich einen Phasengang von $\varphi = 0$ aufweisen. Es wird sich zeigen, dass kausale Systeme immer eine Phase $\varphi(\Omega) \neq 0$ aufweisen. Es wird sich außerdem zeigen, dass eine lineare Phase im Durchlassbereich nur zu einer Verschiebung des Signals führt und das Signal darüber hinaus nicht verzerrt wird. Dadurch kann die Forderung an den Phasengang abgeschwächt werden.

10.1.2 Idealer Hochpass

Das ideale Hochpass-Filter weist eine Übertragungsfunktion auf, die niederfrequente Anteile bis zu einer Grenzfrequenz Ω_G sperrt und hochfrequente Anteile oberhalb der Grenzfrequenz Ω_G ungedämpft durchlässt. Die Übertragungsfunktion des idealen Hochpass-Filters lautet damit

$$G_{HP}(\Omega) = \begin{cases} 0 & \text{für } |\Omega| < \Omega_G \\ 1 & \text{für } \Omega_G < |\Omega| < \pi \end{cases} \quad (10.4)$$

Die Übertragungsfunktion kann über die Übertragungsfunktion des Tiefpass-Filters ausgedrückt werden.

$$G_{HP}(\Omega) = 1 - G_{TP}(\Omega) \quad (10.5)$$

Die Impulsantwort des idealen Hochpass-Filters ergibt sich nach den Rechenregeln der Fourier-Transformation von Signalfolgen zu

$$g_{HP}[k] = \delta[k] - g_{TP}[k] = \delta[k] - \frac{\sin(\Omega_G \cdot k)}{\pi \cdot k} \quad (10.6)$$

Amplitudengang und Impulsantwort des idealen Hochpass-Filters sind in Bild 10.2 dargestellt.
10.1 Definition idealer Filter über den Amplitudengang

Bild 10.2: Amplitudengang und Impulsantwort des idealen Hochpass-Filters mit $\Omega_0 = \pi/3$

Auch die Impulsantwort $g_{HP}[k]$ ist nicht auf den Bereich $k \geq 0$ beschränkt und deshalb technisch nicht realisierbar.

10.1.3 Ideale Bandsperre und idealer Bandpass

Neben dem idealen Hoch- und Tiefpass existieren die ideale Bandsperre und der ideale Bandpass. Die ideale Bandsperre sperrt in einem Bereich zwischen den Frequenzen Ω_{G1} und Ω_{G2}. Sie besitzt die Übertragungsfunktion

$$G_{BS}(\Omega) = \begin{cases} 1 & \text{für } |\Omega| < \Omega_{G1} \text{ und für } \Omega_{G2} < |\Omega| < \pi \\ 0 & \text{für } \Omega_{G1} < |\Omega| < \Omega_{G2} \end{cases} \quad (10.7)$$

Der ideale Bandpass lässt Signalanteile in einem Bereich zwischen den Frequenzen Ω_{G1} und Ω_{G2} durch. Er hat folgende Übertragungsfunktion:

$$G_{BP}(\Omega) = \begin{cases} 1 & \text{für } \Omega_{G1} < |\Omega| < \Omega_{G2} \\ 0 & \text{für } |\Omega| < \Omega_{G1} \text{ und für } \Omega_{G2} < |\Omega| < \pi \end{cases} \quad (10.8)$$

Die Übertragungsfunktion des Bandpasses kann über die Übertragungsfunktion der Bandsperre ausgedrückt werden.

$$G_{BP}(\Omega) = 1 - G_{BS}(\Omega) \quad (10.9)$$

Beide Amplitudengänge sind in Bild 10.3 dargestellt.
10.2 Entwurf rekursiver Filter (IIR-Filter)

10.2.1 Impulsinvarianter Filterentwurf von IIR-Filtern

Der Filterentwurf für zeitkontinuierliche Systeme in Teil A dieser Buchreihe führt zu kausalen stabilen Systemen, die einfache reelle und konjugiert komplexe Polepaare besitzen. Da der Zählergrad der Übertragungsfunktion bei realisierbaren Systemen kleiner oder gleich dem Nennergrad ist, lässt sich die Übertragungsfunktion als Summe einzelner Partialbrüche darstellen.

\[G(s) = A_0 + \sum_{n=1}^{N} \frac{A_n}{s - \alpha_n} \quad (10.10) \]

Diese Darstellung führt nach einigen Umformungen (Abschnitt 9.1) zu der Übertragungsfunktion des zeitdiskreten Systems.

\[G(z) = A_0 + \sum_{n=1}^{N} A_n \cdot \frac{1}{1 - e^{-\omega_n T_s} \cdot z^{-1}} \quad (10.11) \]

Beispiel: Impulsinvarianter Entwurf eines zeitdiskreten Butterworth-Tiefpass

In Teil A dieser Buchreihe wird ein Butterworth-Filter 3. Ordnung mit einer Grenzfrequenz \(f_G = 10 \text{ kHz} \) und einer maximalen Durchlassdämpfung von 3 dB entworfen. Das System besitzt die Übertragungsfunktion

\[
G(s) = \frac{\omega_G^3}{(s + \omega_G) \left(s + \left(\frac{1}{2} - j \frac{\sqrt{3}}{2} \right) \cdot \omega_G \right) \left(s + \left(\frac{1}{2} + j \frac{\sqrt{3}}{2} \right) \cdot \omega_G \right)}
\]

\[
= \frac{\omega_G}{s + \omega_G} + \frac{2}{s + \left(\frac{1}{2} - j \frac{\sqrt{3}}{2} \right) \cdot \omega_G} + \frac{2}{s + \left(\frac{1}{2} + j \frac{\sqrt{3}}{2} \right) \cdot \omega_G}
\quad (10.12)
\]

Das Filter soll zeitdiskret auf einem System umgesetzt werden, das mit einer Abtastrate von \(f_A = 100 \text{ kHz} \) arbeitet. Nach Gleichung (9.5) ergibt sich die z-Transformierte \(G(z) \) zu

\[
G(z) = \frac{\omega_G}{1 - e^{-\omega_G T_s} \cdot z^{-1}} + \frac{\omega_G}{1 - e^{-\left(\frac{1}{2} - j \frac{\sqrt{3}}{2} \right) \cdot \omega_G T_s} \cdot z^{-1}} + \frac{\omega_G}{1 - e^{-\left(\frac{1}{2} + j \frac{\sqrt{3}}{2} \right) \cdot \omega_G T_s} \cdot z^{-1}}
\quad (10.13)
\]

Mit der indirekt angegebenen Abtastzeit von \(T_A = 10^{-5} \text{ s} \) und der Grenzfrequenz \(\omega_G = 2 \cdot \pi \cdot 10 \text{ kHz} \) ergibt sich das Produkt
\[T_K \cdot \omega_a = 10^{-5} \cdot s \cdot 2 \cdot \pi \cdot 10^4 = \frac{2 \cdot \pi}{10} = \frac{\pi}{5} \] \hspace{1cm} (10.14)

und die Übertragungsfunktion \(G(z) \) berechnet sich zu

\[
G(z) = \frac{\omega_a}{1 - e^{-\frac{\pi}{5}} \cdot z^{-1}} + \frac{\omega_a \cdot 2}{1 - e^{-\frac{\pi}{5}} \cdot \frac{\sqrt{3}}{2} \cdot z^{-1}} + \frac{\omega_a \cdot 2}{1 - e^{-\frac{\pi}{5}} \cdot \left(\frac{\sqrt{3}}{2}\right) \cdot z^{-1}}
\]

\[= 79734 \cdot \frac{z^2 + 0.6587 \cdot z}{z^3 - 1.7833 \cdot z^2 + 1.2002 \cdot z - 0.2846} \] \hspace{1cm} (10.15)

Bild 10.4 stellt das Pol-Nullstellendiagramm für das impulsinvariant entworfene Butterworth-Filter dar.

Bild 10.4: Pol-Nullstellendiagramm für das impulsinvariant entworfene Butterworth-Filter dritter Ordnung

Die Pole liegen erwartungsgemäß im Inneren des Einheitskreises, das System ist demnach stabil. Die Verstärkung des zeitdiskreten Systems ist im Gegensatz zu dem Verstärkungsfaktor des zeitkontinuierlichen Systems ungleich eins. Er errechnet sich zu

\[
G(1) = 79734 \cdot \frac{1 + 0.6587}{1 - 1.7833 + 1.2002 - 0.2846} = 999650
\] \hspace{1cm} (10.16)

Bei einem direkten Vergleich der beiden Systeme muss mit diesem Faktor entsprechend normiert werden. Der Frequenzgang \(G(\Omega) \) berechnet sich zu

\[
G(\Omega) = 0.1269 \cdot \frac{e^{i2\Omega} + 0.6587 \cdot e^{i\Omega}}{e^{i3\Omega} - 1.7833 \cdot e^{i2\Omega} + 1.2002 \cdot e^{i\Omega} - 0.2846}
\] \hspace{1cm} (10.17)

Bild 10.5 zeigt den normierten Frequenzgang des zeitdiskreten Systems im linearen Maßstab im Vergleich zu dem Frequenzgang des zeitkontinuierlichen Systems.
Bild 10.5: Frequenzgang des impulsinvariant entworfenen Butterworth-Filter dritter Ordnung

Der Amplitudengang ist für das zeitdiskrete und das zeitkontinuierliche Filter identisch. Die 3dB-Grenzfrequenz des zeitdiskreten Filters beträgt 10 kHz und stimmt mit der 3-dB-Grenzfrequenz des zeitkontinuierlichen Filters überein. Da der Amplitudengang für $\Omega = \pi$ nahe null ist, wirkt sich die periodische Wiederholung nicht auf das Basisband aus. Der Phasengang stimmt bis zu der Frequenz $\Omega = \pi/2$ gut überein. Bei größeren Frequenzen führt die periodische Wiederholung des Phasengangs zu einem Phasenanstieg.

Mit der Übertragungsfunktion $G(z)$ kann das Filter als Differenzengleichung realisiert werden. Ausgehend von der Übertragungsfunktion ergibt sich nach der Division von Zähler und Nenner durch die höchste Potenz von z die Gleichung

$$G(z) = \frac{Y(z)}{U(z)} = \frac{0.1269 \cdot z^{-1} + 0.0836 \cdot z^{-2}}{1 - 1.7833 \cdot z^{-1} + 1.2002 \cdot z^{-2} - 0.2846 \cdot z^{-3}} \quad (10.18)$$

und damit die Differenzengleichung

$$y[k] = 1.7833 \cdot y[k-1] - 1.2002 \cdot y[k-2] + 0.2846 \cdot y[k-3] + 0.1269 \cdot u[k-1] + 0.0836 \cdot u[k-2] \quad (10.19)$$

Bild 10.6 stellt die Impuls- und Sprungantwort des zeitdiskreten Systems im Vergleich zum zeitkontinuierlichen System dar. Wieder werden die zeitdiskreten Signale entsprechend normiert.
Charakteristisch für den impulsvarianten Entwurf ist das Übereinstimmen der zeitkontinuierlichen und
der zeitdiskreten Impulsantwort. Da die Sprungantwort im zeitkontinuierlichen Bereich über ein Integral und im zeitdiskreten Bereich über eine Summe gebildet wird, sind sie trotz identischer Impulsantwort unterschiedlich.

10.2.2 Filterentwurf mit der bilinearen Transformation

Neben dem impulsinvarianten Entwurf werden zeitdiskrete Filter über die bilineare Transformation
tworfen. Das Verfahren ist in Abschnitt 9.2.3 ausführlich beschrieben. Formell wird die Variable s
der Übertragungsfunktion $G(s)$ durch den Ausdruck

$$s = \frac{2}{T_A} \frac{z - 1}{z + 1} \quad (10.20)$$

Durch die Transformation findet eine Frequenzverschiebung statt. Deshalb wird das zeitkontinuierli-
che System mit einer Grenzfrequenz ausgelegt, die diese Verschiebung berücksichtigt. Sie berechnet
sich zu

$$\omega_{GP} = 2 \tan \left(\frac{\Omega_A}{2} \right) = 2 \tan \left(\frac{\omega_A \cdot T_A}{2} \right) \quad (10.21)$$

Bei der Entwicklung von Bandpässen und Bandsperren werden zwei Grenzfrequenzen spezifiziert. Bei
der Entwicklung dieser Filter muss für jede der Grenzfrequenzen eine derartige Verschiebung durch-
geführt werden.

Beispiel: Entwurf eines zeitdiskreten Butterworth-Tiefpass über die bilineare Transformation

Zum Vergleich wird das Beispiel des Butterworth-Tiefpasses aus Abschnitt 10.2.1 aufgegriffen. Zur
Kompensation der Frequenzverschiebung wird die Grenzfrequenz gemäß Gleichung (10.21) umge-
rechnet zu

$$\omega_{GP} = 2 \tan \left(\frac{\omega_A \cdot T_A}{2} \right) = 200 \text{kHz} \cdot \tan \left(\frac{2 \cdot \pi \cdot 10^4 \cdot 10^{-6}}{2} \right) = 64.98 \text{kHz} \quad (10.22)$$

Das zeitkontinuierliche Filter hat die Übertragungsfunktion

$$G(s) = \frac{\omega^3_{GP}}{(s + \omega_{GP}) \left(s + \frac{1}{2} - j \frac{\sqrt{3}}{2} \cdot \omega_{GP}\right) \left(s + \frac{1}{2} + j \frac{\sqrt{3}}{2} \cdot \omega_{GP}\right)}$$

$$= \frac{\omega^3_{GP}}{s^3 + 2 \cdot s^2 \cdot \omega_{GP} + 2 \cdot s \cdot \omega^2_{GP} + \omega^3_{GP}} \quad (10.23)$$

Mit der bilinearen Transformation wird das zeitkontinuierliche System in ein zeitdiskretes Filter mit
der Übertragungsfunktion
10.2 Entwurf rekursiver Filter (IIR-Filter)

\[
G(z) = \frac{1}{\left(\frac{s}{\omega_{GP}}\right)^3 + 2 \cdot \left(\frac{s}{\omega_{GP}}\right)^2 + 2 \cdot \frac{s}{\omega_{GP}} + 1} = \frac{(z + 1)^3}{z^3 - 1.760 \cdot z^2 + 1.183 \cdot z - 0.2781}
\]

(10.24)

überführt. Bild 10.7 stellt das Pol-Nullstellendiagramm für das über die bilineare Transformation entworfene Butterworth-Filter dritter Ordnung dar.

Während die Pole eine ähnliche Lage haben wie bei dem impulsinvarianten Entwurf, liegt an dem Punkt \(z = -1 \) eine Nullstelle dritter Ordnung. Dadurch weist der Amplitudengang an der Stelle \(\Omega = \pm \pi \) exakt den Wert 0 auf. Die Pole der Übertragungsfunktion liegen auch bei diesem Verfahren im Inneren des Einheitskreises, das System ist demnach stabil. Die Verstärkung des zeitdiskreten Systems errechnet sich zu

\[
G(1) = 0.0181 \cdot \frac{2^3}{1 - 1.760 + 1.183 - 0.2781} = 1
\]

(10.25)

Der Frequenzgang \(G(\Omega) \) ergibt sich durch die Substitution \(z = e^{i\Omega} \) zu

\[
G(\Omega) = 0.0181 \cdot \frac{e^{3i\Omega} + 3 \cdot e^{2i\Omega} + 3 \cdot e^{i\Omega} + 1}{e^{3i\Omega} - 1.760 \cdot e^{2i\Omega} + 1.183 \cdot e^{i\Omega} - 0.2781}
\]

(10.26)

Bild 10.8 zeigt den Frequenzgang des zeitdiskreten Systems im Vergleich zu dem Frequenzgang des zeitkontinuierlichen Systems im linearen Maßstab.
Der Vergleich des zeitkontinuierlichen Filters mit dem zeitdiskreten Filter zeigt erwartungsgemäß die Frequenzverschiebung gemäß der Beziehung

\[\Omega_b = 2 \cdot \arctan \left(\frac{\omega \cdot T_A}{2} \right) \]

(D10.27)

Durch Prewarping sind die 3dB-Grenzfrequenzen des zeitkontinuierlichen und des zeitdiskreten Filters identisch.

Mit der Übertragungsfunktion \(G(z) \) kann das Filter als Differenzengleichung realisiert werden. Ausgehend von der Übertragungsfunktion ergibt sich nach der Division von Zähler und Nenner mit der höchsten Potenz von \(z \) die Gleichung

\[G(z) = \frac{Y(z)}{U(z)} = 0.0167 \cdot \frac{1 + 3 \cdot z^{-1} + 3 \cdot z^{-2} + z^{-3}}{1 - 1.798 \cdot z^{-1} + 1.221 \cdot z^{-2} - 0.2898 \cdot z^{-3}} \]

(D10.28)

und damit die Differenzengleichung

\[y[k] = 1.798 \cdot y[k-1] - 1.221 \cdot y[k-2] + 0.2898 \cdot y[k-3] \]

\[+ 0.0167 \cdot u[k] + 0.0501 \cdot u[k-1] + 0.0501 \cdot u[k-2] + 0.0167 \cdot u[k-3] \]

(D10.29)

Bild 10.9 stellt die Impuls- und Sprungantwort des zeitdiskreten Systems im Vergleich zur Impuls- und Sprungantwort des zeitkontinuierlichen Systems. Wieder werden die zeitdiskreten Signale entsprechend normiert.

(Bild 10.8: Frequenzgang des über die bilineare Transformation entworfenen Butterworth-Filters dritter Ordnung)

(Bild 10.9: Impuls- und Sprungantwort für das über die bilineare Transformation entworfenen Butterworth-Filter dritter Ordnung)
Im Gegensatz zum impulsinvarianten Entwurf stimmen zeitkontinuierliche und zeitdiskrete Impulantwort nicht mehr exakt überein. Auch die Sprungantworten unterscheiden sich.
10.3 Entwurf nichtrekursiver Filter (FIR-Filter)

10.3.1 Impulsinvarianter Filterentwurf von FIR-Filtern

In Abschnitt 10.1 werden die Frequenzgänge und Impulsantworten idealer Filter diskutiert. Sie sind Ausgangspunkt für den impulsinvarianten Entwurf von FIR-Filtern. Der Entwurf wird am Beispiel eines Tiefpass-Filtern hergeleitet. Mit den bekannten Frequenzgängen und Impulsantworten von Hochpass, Bandpass und Bandsperre kann das Verfahren auf die anderen Filtertypen übertragen werden.

Der Frequenzgang des zeitkontinuierlichen idealen Tiefpasses mit einer Grenzfrequenz \(\omega_c \) ist definiert über seinen Amplitudengang

\[
A_{TP}(\omega) = \begin{cases}
1 & \text{für } |\omega| < \omega_c \\
0 & \text{für } \omega_c < |\omega|
\end{cases}
\]

(10.30)

und seine lineare Phase

\[
\varphi_{TP}(\omega) = e^{-j\omega t_c}
\]

(10.31)

Die Impulsantwort des zeitkontinuierlichen idealen Tiefpass-Filter ergibt sich aus den Rechenregeln zur Fourier-Transformation und den angegebenen Korrespondenzen zu

\[
g(t) = \frac{\sin(\omega_c \cdot (t-t_c))}{\pi \cdot (t-t_c)}
\]

(10.32)

Amplitudengang und Impulsantwort des idealen zeitkontinuierlichen Tiefpass-Filter sind in Bild 10.10 dargestellt.
Entwurf nichtrekursiver Filter (FIR-Filter)

Bild 10.10: Impulsantwort des idealen zeitkontinuierlichen Tiefpass-Filters mit einer Grenzfrequenz $\omega_G = 1000$ rad/s

Damit das Filter als zeitdiskretes FIR-Filter mit linearer Phase realisiert werden kann, müssen folgende Bedingungen erfüllt sein:

- Die Impulsantwort $g[k]$ muss kausal sein.
- Die Impulsantwort muss endlich sein.
- Die Impulsantwort muss eine geeignete Symmetrie aufweisen.

Die ersten beiden Bedingungen werden über das Ausschneiden der Impulsantwort $g(t)$ über eine Fensterfunktion $w(t)$ erreicht, die zu Zeitpunkt $t = 0$ beginnt und zum Zeitpunkt T endet. Wegen der Achsensymmetrie der Impulsantwort kann die Bedingung nach Symmetrie erfüllt werden, wenn die Fensterung des Signals an der Stelle $T = 2 \cdot t_0$ endet.

\[
g_w(t) = g(t) \cdot w(t) = \frac{\sin(\omega_G \cdot (t - t_0))}{\pi \cdot (t - t_0)} \cdot (\sigma(t) - \sigma(t - 2 \cdot t_0))
\]

Gerade Filterordnung

Für eine gerade Filterordnung N werden $N + 1$ Abtastwerte in das Intervall von $0 \leq t \leq 2 \cdot t_0$ gelegt. Damit gilt für die Zeit t_0 die Bedingung

\[
t_0 = \frac{N}{2} \cdot T_A
\]

Für das oben beschriebene Beispiel ergibt sich bei einer Filterordnung $N = 8$ die Zeit $t_0 = 4 \cdot T_A = 4$ ms, und die Abtastwerte der Impulsantwort berechnen sich für $k = 0 \ldots 8$ zu

\[
g[k] = g(k \cdot T_A) = \frac{\sin(\omega_G \cdot (k \cdot T_A - 4 \cdot T_A))}{\pi \cdot (k \cdot T_A - 4 \cdot T_A)} = \frac{\sin(\Omega_G \cdot (k - 4))}{\pi \cdot T_A \cdot (k - 4)}
\]
Bild 10.11 stellt die Abtastwerte für das oben beschriebene Beispiel bei einem impulsinvarianten Filterentwurf und einer geraden Filterordnung von $N = 8$ dar.

Aus der Impulsantwort $g[k]$ kann die Übertragungsfunktion $G(z)$

$$G(z) = \sum_{k=0}^{N} g[k] \cdot z^{-k}$$

(10.36)

und der Frequenzgang des Filters

$$G(\Omega) = \sum_{k=0}^{N} g[k] \cdot e^{-j\Omega k}$$

(10.37)

bestimmt werden. Bild 10.12 stellt Amplituden- und Phasengang des Filters dar. Zum besseren Vergleich des Ergebnisses mit der Spezifikation werden Amplituden- und Phasengang als Funktion der Kreisfrequenz ω und nicht der normierten Kreisfrequenz Ω dargestellt.

Das Filter erfüllt weitgehend das Spezifikationsziel, an der definierten Grenzfrequenz $\omega_G = 1000 \text{ rad/s}$ beträgt der Amplitudengang $A(\omega_G) = 0.5$, das erste Nebenmaximum hat eine Höhe von $A_N = 0.118$. Der Phasengang ist abgesehen von Sprüngen um $\Delta \varphi = -\pi$ an den Stellen, an denen der Amplitudengang Nullstellen aufweist, linear.

Die Differenzengleichung ergibt sich wie bei den Filterentwürfen zuvor aus der Rücktransformation der Übertragungsgleichung $G(z)$ in den Zeitbereich.
Ungerade Filterordnung

Auch bei ungerader Filterordnung N werden N + 1 Abtastwerte in das Intervall von $0 \leq t \leq 2 \cdot t_0$ gelegt. Damit gilt für die Zeit t_0 die Bedingung

$$t_0 = \frac{N}{2} \cdot T_A$$ \hspace{1cm} (10.38)

Die Zeit t_0 ist damit selbst kein Abtastwert mehr. Für das oben beschriebene Beispiel ergibt sich bei einer Filterordnung N = 9 die Zeit $t_0 = 4.5 \cdot T_A = 4.5$ ms, und die Abtastwerte der Impulsantwort berechnen sich für $k = 0 \ldots 9$ zu

$$g[k] = g(k \cdot T_A) = \frac{\sin(\omega_0 \cdot (k \cdot T_A - 4.5 \cdot T_A))}{\pi \cdot (k \cdot T_A - 4.5 \cdot T_A)} = \frac{\sin(\Omega_0 \cdot (k - 4.5))}{\pi \cdot T_A \cdot (k - 4.5)}$$ \hspace{1cm} (10.39)

Bild 10.11 stellt die Abtastwerte für das oben beschriebene Beispiel bei einem impulsinvarianten Filterentwurf und einer ungeraden Filterordnung von N = 9 dar.

Aus der Impulsantwort $g[k]$ kann wieder die Übertragungsfunktion $G(z)$ und der Frequenzgang des Filters $G(\Omega)$ bestimmt werden.

Bild 10.13: Abtastwerte bei einem impulsinvarianten Filterentwurf und ungerader Filterordnung N = 9

Bild 10.14: Vergleich des Amplituden- und Phasengangs der entworfenen FIR-Filter bei einem impulsinvarianten Filterentwurf mit den Ordnungen N = 8 und N = 9
Die Differenzengleichung ergibt sich wie bei den Filterentwürfen zuvor aus der Rücktransformation der Übertragungsgleichung $G(z)$ in den Zeitbereich.

Zusammenfassung zum impulsinvarianten Entwurf von FIR-Filtern

Tabelle 10.1 fasst das Vorgehen zum impulsinvarianten Entwurf von FIR-Filtern zusammen. Dabei wird davon ausgegangen, dass die Filterordnung N und die Abtastzeit T_A vorgegeben sind.

<table>
<thead>
<tr>
<th>Schritt</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bestimmung der Impulsantwort $g(t)$ des idealen Filters, Beispiel Tiefpass $g(t) = \frac{\sin(\omega_0 \cdot (t - t_0))}{\pi \cdot (t - t_0)}$</td>
</tr>
<tr>
<td>2</td>
<td>Bestimmung der Zeitverschiebung t_0 aus Filterordnung N und Abtastzeit T_A, $t_0 = \frac{N}{2} \cdot T_A$</td>
</tr>
<tr>
<td>3</td>
<td>Bestimmung der $N + 1$ Werte der Impulsantwort $g[k]$ $g[k] = g(k \cdot T_A)$</td>
</tr>
<tr>
<td>4</td>
<td>Berechnung der Übertragungsfunktion $G(z) = \sum_{k=0}^{N} g[k] \cdot z^{-k}$</td>
</tr>
<tr>
<td>5</td>
<td>Aufstellen der Differenzengleichung durch Rücktransformation der Gleichung $G(z)$ in den Zeitbereich $G(z) = \frac{Y(z)}{U(z)}$</td>
</tr>
</tbody>
</table>

Alternativ zu dem hier skizzierten Verfahren, bei dem die Gruppenlaufzeit $T_G = t_0$ über die Filterordnung N und die Abtastzeit T_A bestimmt wird, ist auch die Vorgabe anderer Randbedingungen wie Gruppenlaufzeit und Filterordnung denkbar. Das Verfahren bleibt in diesen Fällen ähnlich.

10.3.2 Approximation des Frequenzgangs

In Abschnitt 10.3.1 werden FIR-Filter ausgehend von der Impulsantwort eines idealen Filters bestimmt. Der Umweg über den Zeitbereich ist nicht zwingend erforderlich. Alternativ können die Koeffizienten des Filters aus der inversen Fourier-Transformation für Signalfolgen bestimmt werden. Nach den Ausführungen in Kapitel 7 gilt

\[
g[k] = \frac{1}{2 \cdot \pi} \cdot \int_{-\pi}^{\pi} G(\Omega) \cdot e^{ik \Omega} \, d\Omega \quad (10.41)
\]
Dabei ist die Impulsantwort $g[k]$ nicht zwingend kausal und besitzt außerdem eine unendlich große Länge. Um diese beiden Einschränkungen zu umgehen, wird die Impulsantwort für den Bereich $-N/2 \leq k \leq N/2$ berechnet und anschließend um $k_0 = N/2$ nach rechts verschoben. Da der Wert k_0 ein ganzzahliger Wert sein muss, lassen sich mit dem hier beschriebenen Verfahren nur FIR-Filter gerader Ordnung implementieren. Das Verfahren wird an dem Beispiel aus Abschnitt 10.3.1 verdeutlicht, bei dem ein Filter mit einer Grenzfrequenz von $\omega_G = 1000$ rad/s mit einer Abtastzeit von $T_A = 1$ ms und eine Ordnung $N = 8$ realisiert werden soll. Die Grenzfrequenz ω_G entspricht der normierten Grenzfrequenz $\Omega_G = \omega_G \cdot T_A$. Damit berechnen sich die Koeffizienten $g[k]$ zu

$$g[k] = \frac{1}{2 \cdot \pi} \cdot \int_{-\pi}^{\pi} G(\Omega) \cdot e^{j k \Omega} \, d\Omega = \frac{1}{2 \cdot \pi} \cdot \int_{-\Omega_G}^{\Omega_G} e^{j k \Omega} \, d\Omega$$

$$= \frac{1}{2 \cdot \pi} \cdot \frac{1}{j \cdot k} \cdot \int_{-\Omega_G}^{\Omega_G} \frac{\sin(\Omega_G \cdot k)}{\Omega \cdot k} \cdot \int_{-\Omega_G}^{\Omega_G}$$

(10.42)

Damit die Impulsantwort kausal wird, wird sie um $N/2 = 4$ verschoben, und es ergibt sich

$$g[k - 4] = \frac{\sin(\Omega_G \cdot (k - 4))}{\pi \cdot (k - 4)}$$

(10.43)

Bis auf den Proportionalitätsfaktor $1/T_A$ entspricht die Impulsantwort der Impulsantwort in Gleichung (10.35), die nach dem impulsinvarianten Verfahren bestimmt wird. Beide Verfahren führen damit zu derselben Filterfunktion. Tabelle 10.2 fasst das Vorgehen zum Entwurf von FIR-Filtern über die Approximation des Frequenzgangs zusammen.

Tabelle 10.2: Vorgehen zum Entwurf von FIR-Filtern über die Approximation des Frequenzgangs

<table>
<thead>
<tr>
<th>Schritt</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Definition des idealen Frequenzgangs $G(\Omega)$</td>
</tr>
<tr>
<td>2</td>
<td>Bestimmung der $N + 1$ Werte der Impulsantwort $g[k]$ für $-N/2 \leq k \leq N/2$</td>
</tr>
<tr>
<td></td>
<td>$g[k] = \frac{1}{2 \cdot \pi} \cdot \int_{-\pi}^{\pi} G(\Omega) \cdot e^{j k \Omega} , d\Omega$</td>
</tr>
<tr>
<td>3</td>
<td>Verschiebung der Impulsantwort um $k_0 = N/2$ zur Generierung einer kausalen Impulsantwort</td>
</tr>
<tr>
<td>4</td>
<td>Berechnung der Übertragungsfunktion</td>
</tr>
<tr>
<td></td>
<td>$G(z) = \sum_{k=0}^{N} g[k] \cdot z^{-k}$</td>
</tr>
<tr>
<td>5</td>
<td>Aufstellen der Differenzengleichung durch Rücktransformation der Gleichung $G(z)$ in den Zeitbereich</td>
</tr>
<tr>
<td></td>
<td>$G(z) = \frac{Y(z)}{U(z)}$</td>
</tr>
</tbody>
</table>
10.3.3 Fensterfunktionen zur Verbesserung der Filtercharakteristik

Bei der Berechnung der Impulsantwort $g_w[k]$ wird die Impulsantwort $g(t)$ abgetastet und mit einer Fensterfunktion $w[k]$ multipliziert.

$$g_w[k] = g[k] \cdot w[k]$$ \hspace{1cm} (10.44)

Nach den Rechenregeln zur Fourier-Transformation für Signalfolgen in Abschnitt 7.2.9 ergibt sich bei Multiplikation zweier Signalfolgen im Zeitbereich eine Faltung der jeweiligen Spektren im Frequenzbereich.

$$G_w(\Omega) = G(\Omega) \ast W(\Omega) = \frac{1}{2 \pi} \int_{-\pi}^{\pi} G(\Theta) \cdot W(\Omega - \Theta) \, d\Theta$$ \hspace{1cm} (10.45)

Durch die Faltung des Spektrums $G(\Omega)$ mit dem Spektrum der Fensterfunktion $W(\Omega)$ wird der Frequenzgang verändert. Wäre das Fenster $w[k]$ konstant und unendlich lang, ergäbe sich für das Spektrum $W(\Omega)$ eine periodische Impulsfolge $\delta(\Omega - k \cdot 2 \pi)$. Im Frequenzbereich $-\pi \leq \Omega \leq \pi$ liegt der Impuls an der Stelle $\Omega = 0$. Die Faltung eines Spektrums mit einem Impuls an der Stelle $\Omega = 0$ verändert das Spektrum nicht, sodass ein Filter mit einer unendlich langen Impulsantwort $g_w[k]$ zu dem eigent-lich gewünschten Frequenzgang $G(\Omega)$ führen würde. Mit dieser Forderung ist allerdings bei der Implementierung ein unendlich hoher Rechenaufwand verbunden, sodass dieser Ansatz ausscheidet.

Deshalb ist das Ziel, eine Fensterung zu finden, die bei einer endlichen Länge der Fensterfunktion $w[k]$ ein möglichst schmales Spektrum besitzt, das der Impulsfunktion möglichst nahe kommt.

Zur Diskussion unterschiedlicher Fensterfunktionen ist in Bild 10.15 das Spektrum des Rechteck-Fensters dargestellt.

\[\text{Bild 10.15: Kriterien zur Bewertung von Spektrum von Fensterfunktionen}\]

Breite des Hauptmaximums
Die Breite des Hauptmaximums ist der Frequenzbereich zwischen $\Omega = 0$ und dem ersten Null-
durchgang des Spektrums Ω_S. Eine gute Fensterfunktion hat eine geringe Breite des Hauptma-
ximums, da dadurch bei der Faltung das Spektrum der gefensterten Funktion weniger stark
verbreitert wird.

Relative Amplitude des ersten Nebenmaximums
Die relative Amplitude des Nebenmaximums ist das Verhältnis von Maximum des Nebenma-
ximums A_{SL} zu dem Hauptmaximum A_{ML}. Die relative Amplitude wird in dB angegeben.

$$a_{REL} = 20 \cdot \log \left(\frac{A_{SL}}{A_{ML}} \right)$$ (10.46)

Zielwert ist eine geringe Höhe des Nebenmaximums, also eine kleine relative Amplitude des
Nebenmaximums.

Mit der Bestimmung des idealen Fensters beschäftigen sich viele Veröffentlichungen. Es zeigt sich,
dass ein ideales Fenster nicht existiert, sondern dass ein Kompromiss zwischen endlicher Breite und
relativer Amplitude des Nebenmaximums eingegangen werden muss. Einige Fenster werden im Fol-
genden beschrieben. Dabei wird zur Vereinfachung der Darstellung von einer Fensterfunktion ausge-
gangen, die symmetrisch zum Zeitpunkt $k = 0$ liegt. Diese Fenster sind nicht kausal, können aber
durch eine Zeitverschiebung in kausale Fenster überführt werden.

Rechteckfenster

Das Rechteckfenster wird bei gerader Filterordnung N im Zeitbereich über die Gleichung

$$w_{REC}[k] = \sigma \left(k + \frac{N-1}{2} \right) - \sigma \left(k - \frac{N+1}{2} \right)$$ (10.47)

beschrieben und hat als Spektrum den sogenannten Dirichlet-Kern

$$W_{REC}(\Omega) = \frac{\sin \left(\frac{N \cdot \Omega}{2} \right)}{\sin \left(\frac{\Omega}{2} \right)}$$ (10.48)

Das Rechteckfenster und der normierte Amplitudengang sind in Bild 10.16 dargestellt.
Das Hauptmaximum des Rechteckfensters hat eine Breite von $\Omega_s = 2 \cdot \pi / N$. Die relative Amplitude des Nebenmaximums beträgt $a_{REL} = -13$ dB.

Dreieck- oder Bartlett-Fenster

Das Dreieckfenster wird im Zeitbereich über die Gleichung

$$w_{\text{TRI}}[k] = \left(k + \frac{N-1}{2} \right) \cdot \sigma\left(k + \frac{N-1}{2} \right) - 2 \cdot k \cdot \sigma[k] + \left(k - \frac{N-1}{2} \right) \cdot \sigma\left(k - \frac{N-1}{2} \right)$$ \hspace{1cm} (10.49)

beschrieben und hat das Spektrum

$$W_{\text{TRI}}(\Omega) = \frac{\sin^2\left(\frac{N \cdot \Omega}{4}\right)}{\sin^2\left(\frac{\Omega}{2}\right)}$$ \hspace{1cm} (10.50)

Das Dreieckfenster und der normierte Amplitudengang sind in Bild 10.17 dargestellt.

Das Hauptmaximum des Dreieckfensters hat eine Breite von $\Omega_s = 4 \cdot \pi / N$. Die relative Amplitude des Nebenmaximums beträgt $a_{REL} = -25$ dB.

Hann-Fenster

Auch das Hann-Fenster weist am Beginn und am Ende der Beobachtungszeit keine Sprünge auf, sondern geht an diesen Punkten gegen den Wert 0. Der stetige Übergang wird mit einer Kosinusfunktion beschrieben.

$$w_{\text{HAN}}[k] = \left(0.5 + 0.5 \cdot \cos\left(\frac{2 \cdot \pi \cdot k}{N} \right) \right) \cdot \left[\sigma\left(k + \frac{N-1}{2} \right) - \sigma\left(k - \frac{N+1}{2} \right) \right]$$ \hspace{1cm} (10.51)

Die Fensterfunktion ergibt sich aus dem Produkt von Rechteckfenster und der Kosinusfunktion. Das Spektrum des Hann-Fensters kann über die Faltungsoperation berechnet werden. Es ergibt sich zu
Das Hann-Fenster und sein Spektrum sind in Bild 10.18 dargestellt.

Das Hauptmaximum des Hann-Fensters hat eine Breite von $\Omega_S = 4 \cdot \pi / N$ und ist damit doppelt so breit wie bei dem Rechteckfenster. Die relative Amplitude des Nebenmaximums ist mit $a_{REL} = -32$ dB deutlich größer als bei dem Rechteckfenster.

Hamming-Fenster

Hamming- und Hann-Fenster unterscheiden sich nur geringfügig in der Definition.

$$w_{HAM}[k] = \left(0.54 + 0.46 \cdot \cos\left(\frac{2 \cdot \pi \cdot k}{N}\right)\right) \cdot \left(\sigma\left(k + \frac{N-1}{2}\right) - \sigma\left(k - \frac{N+1}{2}\right)\right)$$ \hspace{1cm} (10.53)

Auch die Berechnung des Spektrums der beiden Fensterfunktionen ist ähnlich. Für das Hamming-Fenster ergibt sich das Spektrum

$$W_{HAM}(\Omega) = 0.23 \cdot \frac{\sin\left(\frac{N \cdot \Omega + 2 \cdot \pi}{N}\right)}{\sin\left(\frac{\Omega + 2 \cdot \pi}{N}\right)} + 0.54 \cdot \frac{\sin\left(\frac{N \cdot \Omega}{2}\right)}{\sin\left(\frac{\Omega}{2}\right)} + 0.23 \cdot \frac{\sin\left(\frac{N \cdot \Omega - 2 \cdot \pi}{N}\right)}{\sin\left(\frac{\Omega - 2 \cdot \pi}{N}\right)}$$ \hspace{1cm} (10.54)

Das Hamming-Fenster und sein Spektrum sind in Bild 10.19 dargestellt.
Das Hauptmaximum des Hamming-Fensters hat eine Breite von $\Omega_S = 4 \cdot \pi / N$. Die relative Amplitude des Nebenmaximums beträgt mit $a_{REL} = -42$ dB und ist nochmals deutlich größer als bei dem Hann-Fenster.

Vergleich der Fensterfunktionen

Tabelle 10.3 stellt die berechneten Kennwerte der unterschiedlichen Fenster zusammen.

<table>
<thead>
<tr>
<th>Fenster-Funktion</th>
<th>Breite des Hauptmaximums Ω_S</th>
<th>Relative Amplitude der Nebenmaxima a_{REL}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rechteck</td>
<td>$2 \cdot \pi / N$</td>
<td>-13 dB</td>
</tr>
<tr>
<td>Dreieck</td>
<td>$4 \cdot \pi / N$</td>
<td>-25 dB</td>
</tr>
<tr>
<td>Hann</td>
<td>$4 \cdot \pi / N$</td>
<td>-32 dB</td>
</tr>
<tr>
<td>Hamming</td>
<td>$4 \cdot \pi / N$</td>
<td>-42 dB</td>
</tr>
</tbody>
</table>

Beispiel: Entwicklung eines Tiefpass-Filters mit Hamming-Fenster

Das Verfahren wird an dem Beispiel eines Tiefpass-Filters mit einer Grenzfrequenz von $\omega_G = 1000$ rad/s und einer Abtastzeit von $T_A = 1$ ms angewendet. Die Ordnung des Filters wird auf $N = 12$ festgelegt. Damit ergibt sich eine Gruppenlaufzeit $T_G = t_0 = 6$ ms.

\[
g[k] = \sin(\omega_G \cdot (k \cdot T_A - 6 \cdot T_A) / \pi \cdot (k \cdot T_A - 6 \cdot T_A)) = \sin(\Omega_G \cdot (k - 6) / \pi \cdot T_A \cdot (k - 6)) \tag{10.55}
\]

Die Impulsantwort $g[k]$ wird mit dem um $k = 6$ nach rechts verschobenen Hamming-Fenster multipliziert, und es ergibt sich die gefensterte Impulsantwort.
10.3 Entwurf nichtrekursiver Filter (FIR-Filter)

\[g_w[k] = \frac{\sin(\Omega_G \cdot (k-6))}{\pi \cdot T_A \cdot (k-6)} \left(0.54 + 0.46 \cdot \cos \left(\frac{2 \cdot \pi \cdot (k-6)}{N} \right) \right) \]

(10.56)

Bild 10.20 vergleicht die Impulsantworten für die Filterentwürfe mit Rechteck- und Hamming-Fenster miteinander.

Die überlagerte Fensterfunktion des Hamming-Fensters verändert die Filterkoeffizienten. Anfangswert \(g_w[0] \) und Endwert \(g_w[12] \) werden dadurch zu null. Aus der Impulsantwort kann direkt die Übertragungsfunktion bestimmt werden. Das mit dem Hamming-Fenster entwickelte System hat die Übertragungsfunktion

\[G_w(z) = \sum_{k=0}^{12} g_w[k] \cdot z^{-k} = \sum_{k=0}^{12} \frac{\sin(\Omega_G \cdot (k-6))}{\pi \cdot T_A \cdot (k-6)} \left(0.54 + 0.46 \cdot \cos \left(\frac{2 \cdot \pi \cdot (k-6)}{N} \right) \right) \cdot z^{-k} \]

(10.57)

Da FIR-Systeme immer stabil sind, ergibt sich der Frequenzgang zu

\[G_w(\Omega) = \sum_{k=0}^{12} g_w[k] \cdot e^{-j\Omega k} = \sum_{k=0}^{12} \frac{\sin(\Omega_G \cdot (k-6))}{\pi \cdot T_A \cdot (k-6)} \left(0.54 + 0.46 \cdot \cos \left(\frac{2 \cdot \pi \cdot (k-6)}{N} \right) \right) \cdot e^{-j\Omega k} \]

(10.58)

Die zu den Impulsantworten gehörenden Frequenzgänge werden in Bild 10.21 miteinander verglichen.

Dafür weist das Rechteckfenster einen deutlich steileren Übergang zwischen Durchlass- und Sperrbereich auf. Auch die Phasengänge unterscheiden sich, sind aber beide linear. Die Gruppenlaufzeit ist mit $T_G = 6 \text{ ms}$ für beide Entwürfe identisch.
10.4 Vergleich rekursiver und nicht rekursiver Filter

In den vorangegangenen Abschnitten werden einige Entwurfsmethoden für zeitdiskrete Filter dargestellt. Die unterschiedlichen Filter und Entwurfsmethoden eignen sich für unterschiedliche Aufgabenstellungen. Im Folgenden werden die Filter gegenübergestellt.

Rekursive Filter (IIR-Filter)

Das Verhältnis von Steilheit zur Filterordnung ist bei IIR-Filtern grundsätzlich höher als bei den hier beschriebenen FIR-Filtern.

Rekursive Filter ergeben sich aus der Spezifikation eines Amplitudengangs, der Phasengang bleibt während des gesamten Entwurfsverfahrens unberücksichtigt. Rekursive Filter eignen sich deshalb nicht dazu, linearphasige Filter oder Filter mit fest vorgegebenem Phasengang zu entwickeln.

Nicht rekursive Filter (FIR-Filter)

Wesentlicher Vorteil von FIR-Filtern ist ihr linearer Phasengang.
Tabellarischer Vergleich

Tabelle 10.4 fasst den Vergleich von IIR- und FIR-Filtern tabellarisch zusammen. Weiterführende Darstellungen für den Entwurf zeitdiskreter Filter sind in [] oder [] zu finden.

Tabelle 10.4: Tabellarischer Vergleich von IIR- und FIR-Filtern

<table>
<thead>
<tr>
<th>Eigenschaft</th>
<th>IIR-Filter</th>
<th>FIR-Filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entwurfsverfahren</td>
<td>Geschlossenes Entwurfsverfahren</td>
<td>Approximationsverfahren</td>
</tr>
<tr>
<td>Einfluss auf den Filterentwurf</td>
<td>wenig Freiheitsgrade</td>
<td>Optimierungskriterien definierbar, zum Beispiel Parks-McClallan-Entwurf</td>
</tr>
<tr>
<td>Effizienz</td>
<td>Hohe Effizienz bei Filtern ohne Phasenvorgaben</td>
<td>Grundsätzlich schlechtere Effizienz, Steigerung der Effizienz durch Dezimierung und Interpolation möglich</td>
</tr>
<tr>
<td>Lineare Phase</td>
<td>Nur in kleinen Frequenzintervallen annähernd lineare Phase</td>
<td>Filter mit linearer Phase realisierbar</td>
</tr>
</tbody>
</table>
10.5 Strukturen und Blockschaltbilder digitaler Systeme

Nach einer Einführung in Blockschaltbilder zeitdiskreter Systeme werden drei grundlegende Strukturen zeitdiskreter Systeme dargestellt und diskutiert:

- Direktstruktur
- Kaskadenstruktur
- Parallelstruktur

10.5.1 Einführung in Blockschaltbilder zeitdiskreter Systeme

Zeitdiskrete Systeme können wie zeitkontinuierliche Systeme als Blockschaltbild dargestellt werden. Als Einführungsbeispiel dient das Blockschaltbild der Differenzengleichung

\[y[k] = u[k] + a \cdot y[k-1] \] \hspace{1cm} (10.59)

Zu dem Eingangssignal \(u[k] \) wird ein um einen Takt verzögertes und mit dem Faktor \(a \) multipliziertes Ausgangssignal addiert. Das Ergebnis ist das Ausgangssignal \(y[k] \). Das System beschreibt demnach obige Differenzengleichung.
10.5.2 Direktstrukturen

\[
G(z) = \frac{Y(z)}{U(z)} = \sum_{m=0}^{M} d_m \cdot z^{-m} = d_0 + d_1 \cdot z^{-1} + \ldots + d_M \cdot z^{-M} + \sum_{n=0}^{N} c_n \cdot z^{-n} = c_0 + c_1 \cdot z^{-1} + \ldots + c_N \cdot z^{-N} \quad (10.60)
\]

Dabei kann der Koeffizient $c_0 = 1$ gewählt werden. Ist das nicht der Fall, wird der gesamte Bruch durch a_0 gekürzt. Mit dieser Voraussetzung errechnet sich die Ausgangsgröße im Bildbereich zu

\[
Y(z) = (d_0 + d_1 \cdot z^{-1} + \ldots + d_M \cdot z^{-M}) \cdot U(z) - (c_1 \cdot z^{-1} + \ldots + c_N \cdot z^{-N}) \cdot Y(z) \quad (10.61)
\]

Diese Gleichung führt zu der Direktstruktur 1 für zeitdiskrete Systeme, die in Bild 10.23 dargestellt ist.

Ein Vergleich von Gleichung (10.61) und des Blockschaltbildes zeigt, dass die Direktform 1 und die Gleichung dieselbe Übertragungsfunktion besitzen. Bei der Darstellung dieser Struktur werden Zählergrad M und Nennergrad N gleichgesetzt. Ist das nicht der Fall, werden die entsprechenden Koeffizienten d_m beziehungsweise c_n zu null gesetzt und das Blockdiagramm gegebenenfalls vereinfacht.

Beispiel: Implementierung eines Systems als Direktstruktur 1

Als Beispiel wird ein System mit der Übertragungsfunktion $G(z)$ in Direktform 1 dargestellt.

\[
G(z) = \frac{z^{-1} - 1.25 \cdot z^{-2} + 0.25 \cdot z^{-3}}{1 - 1.5 \cdot z^{-1} + z^{-2} - 0.25 \cdot z^{-3}} \quad (10.62)
\]

Einsetzen der Koeffizienten aus der gebrochen rationalen Funktion führt zu dem in Bild 10.24 dargestellten Blockschaltbild.
Für die Realisierung werden 6 Speicher, 6 Multiplikationen und 5 Additionen benötigt.

Die Darstellung in Direktform 1 erfordert im Allgemeinen $N + M$ Speicherelemente, weil die Verzögerungsglieder für Eingangssignal und Ausgangssignal separat verwendet werden. Um Speicherelemente einzusparen, kann die Differenzengleichung umgeformt werden zu

$$Y(z) = d_0 \cdot X(z) + (d_1 \cdot X(z) - c_1 \cdot Y(z)) \cdot z^{-1} + \ldots + (d_M \cdot X(z) - c_N \cdot Y(z)) \cdot z^{-N}$$ (10.63)

Beispiel: Implementierung eines Systems als transponierte Direktstruktur 2

Als Beispiel wird ein System mit der Übertragungsfunktion $G(z)$ in transponierter Direktform 2 dargestellt.

$$G(z) = \frac{z^{-1} - 1.25 \cdot z^{-2} + 0.25 \cdot z^{-3}}{1 - 1.5 \cdot z^{-1} + z^{-2} - 0.25 \cdot z^{-3}}$$ (10.64)

Einsetzen der Koeffizienten führt zu dem in Bild 10.26 dargestellten Signalflussgraphen.
Für die Realisierung werden nur noch 3 Speicher benötigt, die Anzahl der Multiplikationen und Additionen bleibt gleich.

10.5.3 Kaskadenstrukturen

Bei der Darstellung des Systems in Direktform 1 oder 2 wird die gebrochen rationale Funktion als Ausgangspunkt betrachtet. Ändert sich ein Koeffizient der Übertragungsfunktion zum Beispiel wegen Quantisierungsfehlern, ändert sich die gesamte Übertragungsfunktion, weil sämtliche Koeffizienten in die Berechnung der Pole eingehen. Alternativ zu den Direktformen werden deshalb Kaskadenstrukturen aufgebaut, die aus dem Produkt einzelner Teilübertragungsfunktionen zweiter Ordnung gebildet werden. Die Übertragungsfunktion $G(z)$ wird dabei in das Produkt von Teil-Übertragungsfunktionen $G_n(z)$ zerlegt.

\[
G(z) = G_1(z) \cdot G_2(z) \ldots = \frac{d_{01} + d_{11} \cdot z^{-1} + d_{21} \cdot z^{-2}}{c_{01} + c_{11} \cdot z^{-1} + c_{21} \cdot z^{-2}} \cdot \frac{d_{02} + d_{12} \cdot z^{-1} + d_{22} \cdot z^{-2}}{c_{02} + c_{12} \cdot z^{-1} + c_{22} \cdot z^{-2}} \ldots
\]

(10.65)

Der Vorteil der Biquads liegt darin, dass Änderungen der Koeffizienten sich nur auf das Pol-/Nullstellenpaar auswirkt, das mit ihm dargestellt wird. Dadurch wird das Gesamtsystem numerisch stabiler und übersichtlicher.

Beispiel: Implementierung eines Systems als Kaskadenstruktur

Als Beispiel wird wieder ein System mit der Übertragungsfunktion \(G(z) \) dargestellt. Die Übertragungsfunktion kann in zwei Faktoren zerlegt werden.

\[
G(z) = \frac{z^{-1} - z^{-2}}{1 - 1.2 \cdot z^{-1} + 0.7 \cdot z^{-2} - 0.1 \cdot z^{-3}} = \frac{1 + 1.25z^{-1} + 0.25 \cdot z^{-2}}{1 - z^{-1} + 0.5 \cdot z^{-2}} \cdot \frac{1}{1 - 0.5 \cdot z^{-1}}
\] (10.66)

Die Darstellung führt zu dem in Blockschaltbild mit Biquads, das in Bild 10.28 dargestellt ist.

Wie bei der transponierten Direktstruktur 2 werden 3 Speicher benötigt, auch die Anzahl der Multiplikationen und Additionen bleibt gleich.

10.5.4 Parallelstrukturen

Alternativ zur Kaskadenstruktur kann ein als Parallelstruktur realisiert werden. Dazu wird seine Übertragungsfunktion in Partialbrüche zerlegt und Partialbrüche mit konjugiert komplexen Polpaaren zu einem Biquad zusammengefasst. Es entsteht eine Übertragungsfunktion der Form

\[
G(z) = G_1(z) + G_2(z) + \ldots = d_{01} + d_{11} \cdot z^{-1} + d_{21} \cdot z^{-2} + d_{32} + d_{32} \cdot z^{-1} + d_{22} \cdot z^{-2} + \ldots
\] (10.67)

Für ein System vierter Ordnung ergibt sich damit eine Parallelschaltung zweier Biquads, wie sie in Bild 10.29 dargestellt ist.
Alle Biquads erhalten das Eingangssignal zum gleichen Zeitpunkt. Dadurch wird das parallele Rechnen Systemantwort möglich.

Beispiel: Implementierung eines Systems als Parallelstruktur

Als Beispiel wird wieder ein System mit der Übertragungsfunktion $G(z)$ dargestellt. Die Übertragungsfunktion kann in zwei Summanden mit reellen Koeffizienten zerlegt werden.

$$
G(z) = \frac{z^{-1} - z^{-2}}{1 - 1.2 \cdot z^{-1} + 0.7 \cdot z^{-2} - 0.1 \cdot z^{-3}} \cdot \frac{1.5 \cdot z^{-1} + 1 \cdot z^{-2} + 0.5}{1 \cdot z^{-1} + 0.5 \cdot z^{-2} + 1 - 0.5 \cdot z^{-1}}
$$

(10.68)

Die Darstellung führt zu dem Blockschaltbild mit Biquads, das in Bild 10.30 dargestellt ist.
10.5.5 Transversale Strukturen

\[G(z) = \frac{Y(z)}{U(z)} = \sum_{m=0}^{N} d_m \cdot z^{-m} \]

Es ergibt sich eine vergleichsweise einfache Realisierung, die als transversale Struktur bezeichnet wird. Sie ist in Bild 10.31 dargestellt.

Das Eingangssignal durchläuft die gesamte Signalkette, sodass Fehler durch gerundete Korrekturen bei jedem Summanden nur einmal vorkommen können und keine Fehlerkumulation auftritt.
Beispiel: Implementierung eines Systems als transversale Struktur

Als Beispiel wird der gleitende Mittelwert aus 4 Gliedern dargestellt. Er hat die Übertragungsfunktion

\[
G(z) = \frac{z^3 + z^2 + z + 1}{4z^3} = \frac{1}{4} \left(1 + z^{-1} + z^{-2} + z^{-3}\right) \tag{10.70}
\]

Es ergibt sich die in Bild 10.32 dargestellte Transversalstruktur.

10.5.6 Fixed-Point-Darstellung

<<< wird später ergänzt >>>

10.5.7 Bewertung der Relaisierungsstrukturen unter Berücksichtigung der Fixed-Point-Darstellung

10.6 Projekt Filtervergleich

<<< wird später ergänzt >>>
10.7 Literatur

10.7.1 Literaturstellen mit besonders anschaulicher Darstellung

10.7.2 Literaturstellen mit praktischen Anwendungen

10.7.3 Literatur zu MATLAB

[Schw07] Schweizer, Wolfgang: MATLAB kompakt, Oldenbourg Verlag München, 2007

10.7.4 Weiterführende Literatur

10.7.5 Literatur zum Projekt

[]
10.8 Übungsaufgaben - Entwurf zeitdiskreter Filter

10.8.1 Tiefpass mit Phasenverschiebung

Bestimmen Sie die Impulsantwort des Systems mit dem Frequenzgang \(G_{TP}(\Omega) \).

\[
|G(\Omega)| = \text{a} \quad \text{für} \quad |\Omega| \leq \Omega_g \leq \pi \quad \text{und} \quad \varphi_{TP} = -k_o \cdot \Omega
\]

Sonst ist die Fourier-Transformierte gleich null.

10.8.2 Idealer Bandpass

Gegeben ist ein idealer Bandpass mit der unteren Grenzfrequenz \(\Omega_u = \pi/16 \) und der oberen Grenzfrequenz \(\Omega_o = 3 \cdot \pi/16 \). Er weist folgenden Frequenzgang auf.

\[
|G(\Omega)| = 1 \quad \text{für} \quad 0 \leq \Omega_u \leq |\Omega| \leq \Omega_o \leq \pi
\]

Sonst ist die Fourier-Transformierte gleich null.

a) Skizzieren Sie das Spektrum des Bandpasses.

b) Bestimmen und zeichnen Sie die Impulsantwort des Bandpasses.

10.8.3 Zeitkontinuierlicher und zeitdiskreter Filter mit gleicher Grenzfrequenz

Gegeben ist ein analoges Filter mit der Übertragungsfunktion

\[
G(s) = \frac{s + 1}{(s + 3)^2}
\]

a) Berechnen Sie den Amplitudengang \(A(\omega) \) des analogen Filters mit der Übertragungsfunktion \(G(s) \).

b) Berechnen Sie die Frequenz, bei der der Amplitudengang - 20 dB beträgt.

Das Filter wird mithilfe der bilinearen Transformation in ein digitales Filter überführt. Die Abtastfrequenz beträgt \(\omega_A = 2 \cdot \pi \cdot 5 \) Hz.

c) Berechnen Sie die Übertragungsfunktion \(G(z) \) des digitalen Filters.

d) Bei welcher Frequenz weist der Amplitudengang des digitalen Filters einen Betrag von - 20 dB auf?
10.8.4 Filterentwurf über bilineare Transformation

Gegeben ist ein Filter mit der Übertragungsfunktion \(G(s) \).

\[
G(s) = \frac{6 \cdot s}{1 + 3 \cdot s}
\]

a) Um was für einen Filter handelt es sich? Begründen Sie Ihre Antwort.

Der Filter soll mithilfe der bilinearen Transformation in ein digitales Filter überführt werden. Das zeitdiskrete System wird in festen Zeitintervallen \(T_A = 1 \) abgetastet.

b) Bestimmen Sie die z-Transformierte \(G(z) \) des zeitdiskreten Filters.

c) Berechnen Sie den Amplitudengang \(A(\Omega) \) des zeitdiskreten Filters.

d) Berechnen Sie aus dem Amplitudengang \(A(\Omega) \) die Frequenz \(\Omega_{G} \), bei der der Amplitudengang -3 dB beträgt. Bei welcher Frequenz \(\omega_{G} \) weist der Amplitudengang des analogen Filters einen Wert von -3 dB auf?

e) Geben Sie Differenzengleichung an, mit der das Filter implementiert werden kann.

10.8.5 Hochpass-Filterentwurf über bilineare Transformation

Gegeben ist ein analoges System, das durch folgende Übertragungsfunktion beschrieben werden kann:

\[
G(s) = \frac{s \cdot T}{1 + s \cdot T}
\]

a) Berechnen Sie den Amplitudengang \(A(\omega) \) des Systems. Bei welcher Frequenz \(\omega_{20} \) weist der Amplitudengang einen Wert von -20 dB auf?

b) Das analoge System soll mit der bilinearen Transformation in ein diskretes System überführt werden. Berechnen Sie die Übertragungsfunktion \(G(z) \).

c) Welche Bedingung muss für \(T \) erfüllt sein, damit das System stabil ist? Begründen Sie Ihre Antwort.

d) Berechnen Sie den Amplitudengang des diskreten Systems.

e) Wie muss die Zeitkonstante \(T \) gewählt werden, damit das diskrete Filter an der Grenzfrequenz \(\Omega_{20} \) einen Wert von -20 dB aufweist?
10.8.6 Entwurf eines FIR-Filters

In dieser Aufgabe werden FIR-Tiefpass-Filter der Ordnung $N = 2$ entwickelt, die eine stationäre Verstärkung $a(0) = 0 \text{ dB}$ und eine Grenzfrequenz $\Omega_G = \pi/2$ aufweisen.

a) Berechnen Sie die Übertragungsfunktion $G_1(z)$ eines FIR-Tiefpass-Filters mit Rechteckfenster der Ordnung $N = 2$, der Grenzfrequenz $\Omega_G = \pi/2$ und der stationären Verstärkung $a(0) = 0 \text{ dB}$.

b) Wie ändert sich die Übertragungsfunktion des FIR-Tiefpass-Filters, wenn ein Hamming-Fenster eingesetzt wird? Beachten Sie, dass auch dieses Filter die stationären Verstärkung $a(0) = 0 \text{ dB}$ aufweisen soll.

c) Berechnen Sie für beide Fälle die Pole und Nullstellen. Interpretieren Sie die Auswirkung der unterschiedlichen Pol- und Nullstellenlage auf den Amplitudengang der jeweiligen Filter.

d) Berechnen Sie den Amplitudengang des Filters mit Hamming-Fenster und skizzieren Sie den Verlauf. Welchen Amplitudengang $A_2(\Omega_G)$ weist der Filter an der Grenzfrequenz $\Omega_G = \pi/2$ auf?

10.8.7 Vergleich zweier FIR-Filter

Ein ideales Tiefpass-Filter mit der Grenzfrequenz $\omega_G = \pi/3 \text{ krad/s}$ soll mit Hilfe eines FIR-Filter der Filterordnung $N = 4$ approximiert werden. Das System arbeitet mit einer Abtastzeit $T_A = 1 \text{ ms}$.

Zunächst wird ein Rechteckfenster verwendet.

a) Berechnen Sie die Impulsantwort $g_1[k]$ des Filters.

b) Geben Sie Übertragungsfunktion $G_1(z)$ des Filters an.

c) Geben Sie Frequenzgang $G_1(\Omega)$ des Filters an.

d) Mit welcher Differenzengleichung kann das Filter z.B. in einem Mikro-Controller implementiert werden. Lösen Sie die Gleichung nach $y[k]$ auf.

Statt des Rechteck-Fensters wird bei einem zweiten Filterentwurf ein Hamming-Fenster verwendet.

e) Berechnen Sie die Impulsantwort $g_2[k]$ des Filters.

In dem folgenden Diagramm sind zwei Amplitudengänge dargestellt.

- Ist die Verstärkung der beiden Systeme gleich groß?
- Wie könnten Sie dem Ziel eines idealen Tiefpass-Filter näher kommen?
10.8.8 Tiefpass-Hochpass-Transformation

Nachfolgende Abbildung zeigt die Impulsantwort $g[k]$ eines FIR-Filters.

![Impulsantwort g[k]](image)

a) Bestimmen Sie die Differenzengleichung des FIR-Filters aus der Impulsantwort $g[k]$.

b) Ermitteln Sie die Übertragungsfunktion $G(z)$ des FIR-Filters.

Mithilfe der Tiefpass-Hochpass-Transformation kann aus einem Tiefpass ein äquivalenter Hochpass ermittelt werden. Hierfür müssen die Koeffizienten des Tiefpassfilters

$$g_{TP} = [b_0, b_1, b_2, b_3, b_4]$$

wie folgt transformiert werden:

$$g_{HP} = [-b_0, -b_1, (1-b_2), -b_3, -b_4]$$

c) Bestimmen Sie die Differenzengleichung des äquivalenten Hochpasses.

d) Ermitteln Sie die Übertragungsfunktion $G_{HP}(z)$ des FIR-Hochpasses.

10.8.9 Kompensation eines Halteglieds

Siehe Oppenheim FIR-Filter
10.9 Musterlösungen - Entwurf zeitdiskreter Filter

10.9.1 Tiefpass mit Phasenverschiebung

Aus dem Amplitudengang ergibt sich die Impulsantwort durch Rücktransformation

\[
g[k] = \frac{1}{2\pi} \int_{-\Omega_o}^{\Omega_o} a \cdot e^{j\Omega k} d\Omega = \frac{a}{2\pi} \int_{-\Omega_o}^{\Omega_o} e^{j\Omega k} d\Omega = \frac{a}{2\pi} e^{j\Omega k} \cdot \frac{\Omega_o}{\Omega_o} - e^{-j\Omega_k} \frac{\Omega_o}{\Omega_o} = \frac{a}{2\pi} \left(e^{j\Omega k} - e^{-j\Omega_k} \right)
\]

Aus der Angabe zur Phase ergibt sich eine Zeitverzögerung von \(k_0\), sodass sich die Impulsantwort ergibt zu

\[
g[k] = \frac{a}{\pi} \left(\sin(\Omega_o \cdot (k - k_0)) \right)
\]

10.9.2 Idealer Bandpass

a) Die Skizze des Amplitudengangs ist in der folgenden Abbildung dargestellt.

Der Bandpass kann als Summe von Frequenzgängen zweier Tiefpässe dargestellt werden, die jeweils um \(\pm \Omega_1 = \pm (\Omega_o + \Omega_u)/2\) verschoben sind und eine Bandbreite von \(\Omega_G = (\Omega_o - \Omega_u)/2\) aufweisen.

b) Die Impulsantwort ergibt sich wegen der Linearität der Fourier-Transformation für Signalfolgen aus den Impulsantworten, die sich aus den beiden oben diskutierten Spektren ergeben. Dabei entspricht die Verschiebung im Frequenzbereich um \(\pm \Omega_1\) einer Modulation mit der Folge

\[
m_{\Omega_1}[k] = e^{j\Omega_1 k}
\]

Die Impulsantwort des Bandpasses ergibt sich damit zu

\[
g[k] = \frac{1}{\pi} \left(\sin(\Omega_o \cdot k) \right) \cdot \left(e^{j\Omega_1 k} + e^{-j\Omega_1 k} \right) = \frac{2}{\pi} \left(\sin \left(\frac{\Omega_o - \Omega_u}{2} k \right) \right) \cdot \cos \left(\frac{\Omega_o + \Omega_u}{2} k \right)
\]

Die Impulsantwort ist bereits oben dargestellt.
10.9.3 Zeitkontinuierlicher und zeitdiskreter Filter mit gleicher Grenzfrequenz

a) Die Pole der Übertragungsfunktion sind $s_{1,2} = -3$. Sie weisen beide einen negativen Realteil auf, das System ist deshalb stabil. Mit der Substitution $s = j\omega$ ergibt sich der Frequenzgang

$$G(s) = G(s) = \frac{j\omega + 1}{(j\omega + 3)^2} = \frac{j\omega + 1}{-\omega^2 + 6\cdot j\omega + 9}$$

und der Amplitudengang

$$A(\omega) = \frac{\omega^2 + 1}{\sqrt{(9 - \omega^2)^2 + 36\cdot \omega^2}}$$

b) Der Amplitudengang soll an der Frequenz ω den Wert -20 dB betragen, was einen Faktor 1/10 entspricht.

$$A(\omega) = \frac{\omega^2 + 1}{\sqrt{(9 - \omega^2)^2 + 36\cdot \omega^2}} = \frac{1}{10}$$

Quadrieren und Multiplikation mit dem Nenner ergibt

$$100 \cdot \omega^2 + 100 = 81 - 18 \cdot \omega^2 + \omega^4 + 36 \cdot \omega^2$$

Auflösen ergibt die Gleichung

$$\omega^4 - 82 \cdot \omega^2 - 19 = 0$$

Mit der Substitution $u = \omega^2$ wird die Gleichung zu der quadratischen Gleichung

$$u^2 - 82 \cdot u - 19 = 0$$

mit den Lösungen

$$u_{1,2} = 41 \pm \sqrt{41^2 + 19}$$

Da ω^2 eine positive Zahl ist, gilt

$$\omega = \sqrt{41 + \sqrt{41^2 + 19}} = 9.07$$

c) Die Abtastzeit beträgt $T_A = 1/5 = 0.2$. Damit ergibt sich die Übertragungsfunktion $G(z)$ durch bilineare Transformation zu

$$G(z) = G(s) \bigg|_{s = \frac{z - 1}{T_A}} = \frac{2}{T_A} \cdot \frac{z - 1}{z + 1} + 1 = \frac{2 \cdot (z - 1) \cdot T_A \cdot (z + 1) + T_A^2 \cdot (z + 1)^2}{4 \cdot (z - 1)^2 + 12 \cdot (z - 1) \cdot T_A \cdot (z + 1) + 9 \cdot T_A^2 \cdot (z + 1)^2}$$

$$= \frac{2 \cdot T_A \cdot z^2 - 2 \cdot T_A + T_A^2 \cdot z^2 + 2 \cdot T_A^2 \cdot z + T_A^2}{4 \cdot z^2 - 8 \cdot z + 4 + 12 \cdot T_A \cdot z^2 + 12 \cdot T_A^2 \cdot z + 9 \cdot T_A^2 \cdot z + 18 \cdot T_A^2 \cdot z + 9 \cdot T_A^2}$$

$$= \frac{2 \cdot T_A + T_A^2}{4 + 12 \cdot T_A + 9 \cdot T_A^2} \cdot z^2 + \{18 \cdot T_A^2 - 8\} \cdot z + \{4 - 12 \cdot T_A + 9 \cdot T_A^2\}$$
d) Die Frequenz, bei der der Amplitudengang des digitalen Filters -20 dB beträgt, kann mit Aufgaben-teil b) direkt bestimmt werden zu:

\[\Omega = 2 \cdot \arctan \left(\frac{\omega \cdot T_A}{2} \right) = 2 \cdot \arctan \left(\frac{9.07 - 0.2}{2} \right) = 1.4733 \]

beziehungsweise

\[\omega = \frac{\Omega}{T_A} = \frac{1.4733}{0.2} = 7.37 \]

Verifikation des Frequenzgangs anhand des Bode-Diagramms

Deutlich zu erkennen sind die gute Übereinstimmung bis nahe der halben Abtastfrequenz \(\omega_A/2 = 5 \pi \) und die periodischen Wiederholungen des Amplitudengangs für das digitale System.

10.9.4 Hochpass-Filterentwurf über bilineare Transformation

a) Das Filter besitzt die Übertragungsfunktion \(G(s) \) mit

\[G(s) = \frac{s \cdot T}{1 + s \cdot T} \]

Das System ist für \(T > 0 \) stabil und besitzt den Frequenzgang

\[G(\omega) = \frac{j \cdot \omega \cdot T}{1 + j \cdot \omega \cdot T} \]

und den Amplitudengang

\[A(\omega) = \frac{\omega \cdot T}{\sqrt{1 + \omega^2 \cdot T^2}} \]

Die Frequenz, an der der Amplitudengang einen Wert von -20 dB oder einen Betrag von 0.1 aufweist, ergibt sich aus der Bedingung

\[0.01 = \frac{\omega_2^2 \cdot T^2}{1 + \omega_2^2 \cdot T^2} \]

Auflösen nach \(\omega_2 \) führt zu der gesuchten Frequenz

\[\omega_2 = \sqrt{\frac{0.01}{0.99 \cdot T^2}} \]
b) Mit der bilinearen Transformation wird das Filter in den z-Bereich transformiert. Dabei wird die Substitution

$$s = \frac{2 \cdot z - 1}{T_A \cdot z + 1}$$

durchgeführt. Es ergibt sich die Übertragungsfunktion $G(z)$ mit

$$G(z) = \frac{2 \cdot \frac{z - 1}{z + 1} \cdot T}{1 + 2 \cdot \frac{z - 1}{z + 1} \cdot T} = \frac{2 \cdot T \cdot (z - 1)}{(T_A \cdot (z + 1) + 2 \cdot T \cdot (z - 1))} = \frac{2 \cdot T \cdot (z - 1)}{(T_A + 2 \cdot T) \cdot z + (T_A - 2 \cdot T)}$$

c) Damit das System stabil ist, müssen die Pole der Übertragungsfunktion innerhalb des Einheitskreises liegen:

$$|z| = \left| \frac{T_A - 2 \cdot T}{T_A + 2 \cdot T} \right| < 1$$

beziehungsweise

$$|T_A - 2 \cdot T| < |T_A + 2 \cdot T|$$

Diese Bedingung ist für $T > 0$ immer gegeben. Die Stabilitätsbedingung stimmt damit mit der aus dem Laplace-Bereich überein.

d) Der Frequenzgang des digitalen Systems ergibt sich durch die Substitution $z = e^{j\Omega}$ zu

$$G(\Omega) = \frac{2 \cdot T \cdot (e^{j\Omega} - 1)}{(T_A + 2 \cdot T) \cdot e^{j\Omega} + (T_A - 2 \cdot T)}$$

mit dem Amplitudengang

$$A(\Omega) = \left| \frac{2 \cdot T \cdot (\cos(\Omega) + j \cdot \sin(\Omega) - 1)}{(T_A + 2 \cdot T) \cdot (\cos(\Omega) + j \cdot \sin(\Omega)) + (T_A - 2 \cdot T)} \right|$$

$$= \frac{2 \cdot T \cdot (\cos(\Omega) - 1) + j \cdot 2 \cdot T \cdot \sin(\Omega)}{(T_A + 2 \cdot T) \cdot \cos(\Omega) + (T_A - 2 \cdot T) + j \cdot (T_A + 2 \cdot T) \cdot \sin(\Omega)}$$

$$= \sqrt{\frac{4 \cdot T^2 \cdot (\cos(\Omega) - 1)^2 + 4 \cdot T^2 \cdot \sin^2(\Omega)}{(T_A + 2 \cdot T) \cdot \cos(\Omega) + (T_A - 2 \cdot T))^2 + (T_A + 2 \cdot T)^2 \cdot \sin^2(\Omega)}}$$

e) Durch die Umrechnung mit der bilinearen Transformation ergibt sich die Frequenzverschiebung

$$\omega = \frac{2}{T_A} \cdot \tan \left(\frac{\Omega}{2} \right)$$

Damit das digitale Hochpass-Filter die Grenzfrequenz Ω_{20} aufweist, muss das analoge Filter die Grenzfrequenz

$$\omega_{20} = \frac{2}{T_A} \cdot \tan \left(\frac{\Omega_{20}}{2} \right)$$
aufweisen. Damit ergibt sich die Zeitkonstante des zugrunde liegenden analogen Filters eine Zeitkonstante von
Entwurf zeitdiskreter Filter

\[T = \sqrt{\frac{0.01}{0.99}} \cdot \frac{1}{\omega_{20}} = \sqrt{\frac{0.01}{0.99}} \cdot \frac{T_A}{2 \cdot \tan(\Omega_{20}/2)} \]
aufweisen.

10.9.5 Tiefpass-Filterentwurf über bilineare Transformation

a) Das zeitdiskrete Filter soll eine Grenzfrequenz von \(\omega_G = 0.4996 \) Hz aufweisen. Wegen der Frequenzverschiebung bei der bilinearen Transformation und einer Abtastzeit von \(T_A = 0.2 \) muss das analoge Filter ausgelegt werden auf eine Grenzfrequenz von

\[\omega_{GA} = \frac{2}{T_A} \cdot \tan\left(\frac{\Omega}{2}\right) = \frac{2}{T_A} \cdot \tan\left(\omega_g \cdot T_A \cdot \frac{2}{2}\right) = \frac{2}{0.2} \cdot \tan\left(\frac{0.4996 \cdot 0.2}{2}\right) = 0.5 \]

Daraus ergibt sich die Zeitkonstante von

\[T = \frac{1}{\omega_{GA}} = 2 \]

b) Die Übertragungsfunktion des zeitdiskreten Systems ergibt sich bei der bilinearen Transformation aus

\[G(z) = G(s) \big|_{z = \frac{e^{j\omega T}}{T_A}} = \frac{1}{1 + \frac{2}{T_A} \cdot \frac{z-1}{z+1}} = \frac{1}{1 + 20 \cdot \frac{z-1}{z+1}} = \frac{z+1}{21 \cdot z - 19} \]

c) Zur Bestimmung der Differenzengleichung muss die Übertragungsfunktion umgeformt werden

\[G(z) = \frac{Y(z)}{U(z)} = \frac{z+1}{21 \cdot z - 19} = \frac{1+1 \cdot z^{-1}}{21 - 19 \cdot z^{-1}} \]

Ausmultiplizieren führt zu der Gleichung

\[Y(z) \cdot (21 - 19 \cdot z^{-1}) = U(z) \cdot (1 + z^{-1}) \]

Mit der Verschiebungsregel ergibt sich die Differenzengleichung

\[21 \cdot y[k] - 19 \cdot y[k-1] = x[k] + x[k-1] \]

Auflösen nach \(y[k] \) führt zu

\[y[k] = u[k] + u[k-1] + 19 \cdot y[k-1] \]

\[\frac{1}{21} \]

d) Die Übertragungsfunktion des Systems besitzt einen Pol an der Stelle

\[\alpha = \frac{19}{21} \]

Er liegt im Einheitskreis, sodass das System stabil ist. Damit kann der Frequenzgang berechnet werden über

\[G(\Omega) = G(z) \big|_{z = e^{j\Omega}} = \frac{e^{j\alpha} + 1}{21 \cdot e^{j\Omega} - 19} = \frac{\cos(\Omega) + 1 + j \cdot \sin(\Omega)}{21 \cdot \cos(\Omega) - 19 + j \cdot 21 \cdot \sin(\Omega)} \]

Der Amplitudengang ergibt sich aus dem Betrag des Frequenzgangs zu
\[
A(\Omega) = \sqrt{\frac{(\cos(\Omega) + 1)^2 + j \cdot \sin^2(\Omega)}{(21 \cdot \cos(\Omega) - 19)^2 + 21^2 \cdot \sin^2(\Omega)}} = \sqrt{2 + 2 \cdot \cos(\Omega)} \]
\[
\frac{2102 + 798 \cdot \cos(\Omega)}{802 + 798 \cdot \cos(\Omega)}
\]

An der Stelle \(\Omega_g = \omega_G \cdot T_A = 0.0999\) ergibt sich erwartungsgemäß der Frequenzgang

\[
A(\Omega_g) = \frac{1}{\sqrt{2}}
\]

10.9.6 Entwurf eines FIR-Filters

a) Das Filter 1 besitzt nach den Darstellungen in der Vorlesung für \(k = 0 \ldots 2\) die Impulsantwort

\[
g[k] = \frac{\Omega_g}{\pi \cdot T_A} \cdot \sin\left(\frac{\Omega_g \cdot (k - 1)}{\Omega_g}\right)
\]

Daraus ergibt sich die Übertragungsfunktion

\[
G_1(z) = \sum_{k=0}^{2} g[k] \cdot z^{-k} = \frac{\Omega_g}{\pi \cdot T_A} \cdot \left(\frac{\sin\left(-\Omega_g\right)}{\Omega_g} \cdot 1 \cdot z^{-1} + \frac{\sin(\Omega_g)}{\Omega_g} \cdot z^{-2}\right)
\]

\[
= \frac{\Omega_g}{\pi \cdot T_A} \cdot \left(\frac{\sin(\Omega_g)}{\Omega_g} + 1 \cdot z^{-1} + \frac{\sin(\Omega_g)}{\Omega_g} \cdot z^{-2}\right) = \frac{1}{2 \cdot T_A} \cdot \left(\frac{2}{\pi} + z^{-1} + \frac{2}{\pi} z^{-2}\right)
\]

Da das Filter eine stationäre Verstärkung \(G_1(1) = 1\) aufweisen soll, wird die normierte Übertragungsfunktion bestimmt.

\[
G_n(z) = \frac{\left(\frac{2}{\pi} + z^{-1} + \frac{2}{\pi} \cdot z^{-2}\right)}{\left(\frac{2}{\pi} + \frac{2}{\pi}\right)}
\]

b) In diesem Fall werden die die Koeffizienten der Übertragungsfunktion mit denen der Fensterfunktion gewichtet. Das Hamming-Fenster hat für \(N = 2\) die Koeffizienten

\[
w[k] = 0.08 \cdot \delta[k] + 0.08 \cdot \delta[k - 1] + 0.08 \cdot \delta[k - 2]
\]

Damit berechnet sich die Übertragungsfunktion bei Anwendung des Hamming-Fensters zu

\[
G_2(z) = \frac{\Omega_g}{\pi \cdot T_A} \cdot \left(0.08 \cdot \frac{\sin(\Omega_g)}{\Omega_g} + 1 \cdot z^{-1} + 0.08 \cdot \frac{\sin(\Omega_g)}{\Omega_g} \cdot z^{-2}\right) = \frac{1}{2 \cdot T_A} \cdot \left(0.08 \cdot \frac{2}{\pi} + z^{-1} + 0.08 \cdot \frac{2}{\pi} \cdot z^{-2}\right)
\]

Da das Filter eine stationäre Verstärkung \(G_2(1) = 1\) aufweisen soll, wird die normierte Übertragungsfunktion bestimmt.

\[
G_2(z) = \frac{0.08 \cdot \frac{2}{\pi} + z^{-1} + 0.08 \cdot \frac{2}{\pi} \cdot z^{-2}}{0.08 \cdot \frac{2}{\pi} + 1 + 0.08 \cdot \frac{2}{\pi}}
\]

c) Es handelt sich um ein FIR-Filter, deshalb liegen die Pole der beiden Filter im Koordinatenursprung der z-Ebene. Die Nullstellen des Filters 1 liegen an den Stellen

\[
\beta_{1,1} = -\frac{\pi}{4} \pm \sqrt{\frac{\pi^2}{16} - 1} = -\frac{\pi}{4} \pm j \cdot \sqrt{\frac{16 - \pi^2}{16}} = -0.7854 \pm j \cdot 0.6190
\]
Die Nullstellen des Filters 2

\[\beta_{2,12} = -\frac{\pi}{4 \cdot 0.08} \pm \frac{\pi^2}{\sqrt{16 \cdot 0.08^2 - 1}} = -\frac{\pi}{4 \cdot 0.08} \pm \frac{\pi^2 - 16 \cdot 0.08^2}{\sqrt{16 \cdot 0.08^2}} = \{-0.0511, -19.5839\} \]

Die Pollage ist in dem folgenden Pol-Nullstellen-Diagramm dargestellt. Auch wenn das in der Aufgabe nicht gefragt war, zeigt das Diagramm rechts die entsprechenden Amplitudengänge.

Da die Nullstellen des Filters 1 auf dem Einheitskreis liegen, wird der Amplitudengang bei Einsatz eines Rechteckfensters null und steigt für größere Frequenzen wieder an. Die Nullstellen des Filters 2 liegen nicht auf dem Einheitskreis, sodass ein insgesamt flacherer Verlauf erreicht wird.

d) Da das System nur Pole im Koordinatenursprung besitzt, kann der Frequenzgang durch die Substitution

\[z = e^{j\Omega} \]

bestimmt werden.

\[G_z(\Omega) = \frac{\Omega_g}{\pi \cdot T_A} \left(0.08 \cdot \frac{\sin(\Omega_g)}{\Omega_g} + 1 \cdot e^{-j\Omega} + 0.08 \cdot \frac{\sin(\Omega_g)}{\Omega_g} \cdot e^{-j2\Omega} \right) \]

\[= \frac{\Omega_g}{\pi \cdot T_A} \left(0.08 \cdot \frac{\sin(\Omega_g)}{\Omega_g} \cdot e^{j\Omega} + 1 + 0.08 \cdot \frac{\sin(\Omega_g)}{\Omega_g} \cdot e^{-j\Omega} \right) \cdot e^{-j\Omega} \]

\[= \frac{\Omega_g}{\pi \cdot T_A} \left(1 + 0.08 \cdot \frac{\sin(\Omega_g)}{\Omega_g} \cdot 2 \cdot \cos(\Omega) \right) \cdot e^{-j\Omega} = \frac{1}{2 \cdot T_A} \left(1 + 0.32 \cdot \frac{\cos(\Omega)}{\pi} \right) \cdot e^{-j\Omega} \]

Der Klammerausdruck ist immer größer als null, deshalb ergibt sich für den Amplitudengang

\[A_z(\Omega) = \frac{1}{2 \cdot T_A} \left(1 + 0.32 \cdot \frac{\cos(\Omega)}{\pi} \right) \]

beziehungsweise mit der Normierung auf \(A_z(0) = 1 \)

\[A_{zN}(\Omega) = \frac{1 + 0.32 \cdot \frac{\cos(\Omega)}{\pi}}{1 + 0.32 \cdot \frac{\cos(\Omega)}{\pi}} = 1 + 0.1019 \cdot \cos(\Omega) \]

Er ist bereits in dem Diagramm oben dargestellt. An der Stelle \(\Omega_g = \pi/2 \) weist er den Wert

\[A_{zN} \left(\Omega = \frac{\pi}{2} \right) = \frac{1 + 0.1019 \cdot \cos \left(\frac{\pi}{2} \right)}{1.1019} = \frac{1}{1.1019} = 0.9075 \]
10.9.7 Vergleich zweier FIR-Filter

a) Zur Berechnung der Impulsantwort $g_1[k]$ muss die Impulsantwort des idealen Tiefpass-Filter um $k_0 = N/2$ nach rechts verschoben und mit einem Rechteckfenster ausgeschnitten.

$$g_1[k] = \frac{\sin(\Omega_0 \cdot (k - 2))}{\pi \cdot T_s \cdot (k - 2)}$$

Einsetzen der Zahlenwerte für $k = 0 \ldots 4$ führt zu

<table>
<thead>
<tr>
<th>k</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$g_1[k]$</td>
<td>137.832</td>
<td>275.664</td>
<td>333.333</td>
<td>275.664</td>
<td>137.832</td>
</tr>
</tbody>
</table>

b) Die Übertragungsfunktion $G_1(z)$ ergibt sich mit $g_1[k]$ zu

$$G_1(z) = \sum_{k=0}^{N} g_1[k] \cdot z^{-k} = 137.832 + 275.664 \cdot z^{-1} + 333.333 \cdot z^{-2} + 275.664 \cdot z^{-3} + 137.832 \cdot z^{-4}$$

c) FIR-Systeme sind immer stabil, damit ergibt sich der Frequenzgang zu

$$G_1(\Omega) = \sum_{k=0}^{N} g_1[k] \cdot e^{-jk\Omega} = 137.832 + 275.664 \cdot e^{-j\Omega} + 333.333 \cdot e^{-j2\Omega} + 275.664 \cdot e^{-j3\Omega} + 137.832 \cdot e^{-j4\Omega}$$

d) Die Differenzengleichung, mit der das Filter implementiert werden kann, lautet

$$y[k] = \sum_{k=0}^{N} g_1[k] \cdot x[k - k] = 137.832 \cdot x[k] + 275.664 \cdot x[k - 1] + 333.333 \cdot x[k - 2] + 275.664 \cdot x[k - 3] + 137.832 \cdot x[k - 4]$$

e) Das Hamming-Fenster errechnet sich für eine Filterordnung $N = 4$ mit $k = -2 \ldots 2$ zu

$$w_{HAM}[k] = \left(0.54 + 0.46 \cdot \cos\left(\frac{\pi \cdot k}{2}\right)\right)$$

Multiplikation der Impulsantwort mit dem Fenster ergibt

<table>
<thead>
<tr>
<th>k</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$g_1[k]$</td>
<td>137.832</td>
<td>275.664</td>
<td>333.333</td>
<td>275.664</td>
<td>137.832</td>
</tr>
<tr>
<td>$w_{HAM}[k]$</td>
<td>0.54</td>
<td>1</td>
<td>0.54</td>
<td>0.54</td>
<td>0.08</td>
</tr>
<tr>
<td>$g_2[k]$</td>
<td>11.026</td>
<td>148.858</td>
<td>333.333</td>
<td>148.858</td>
<td>11.026</td>
</tr>
</tbody>
</table>

g) Die Verstärkung der Filter entspricht dem Amplitudengang an der Stelle $\Omega = 0$. Ein Vergleich der beiden Amplitudengänge zeigt, dass die Verstärkung nicht gleich groß ist.

10.9.8 Tiefpass-Hochpass-Transformation

\[
\begin{array}{c|cccc}
 k & 0 & 1 & 2 & 3 \\
 g_{TF}[k] & 0 & 0.2 & 0.6 & 0.2 \\
 g_{HF}[k] & 0 & -0.2 & 0.4 & -0.2 \\
\end{array}
\]

Die Differenzengleichung lautet damit:

\[
y[k] = 0 \cdot u[k] + 0.2 \cdot u[k-1] + 0.6 \cdot u[k-2] + 0.2 \cdot u[k-3] + 0 \cdot u[k-4] \\
= 0.2 \cdot u[k-1] + 0.6 \cdot u[k-2] + 0.2 \cdot u[k-3]
\]

b) Die Übertragungsfunktion im z-Bereich ergibt sich aus der Differenzengleichung

\[
Y(z) = U(z) \cdot (0.2 \cdot z^{-1} + 0.6 \cdot z^{-2} + 0.2 \cdot z^{-3})
\]

Auflösen nach $G(z)$ ergibt

\[
G(z) = 0.2 \cdot z^{-1} + 0.6 \cdot z^{-2} + 0.2 \cdot z^{-3}
\]

c) Durch Anwendung der Tiefpass-Hochpass-Transformation ergeben sich die in der Tabelle bereits dargestellten Werte für die Filterkoeffizienten. Die entsprechende Differenzengleichung lautet

\[
y[k] = 0 \cdot u[k] - 0.2 \cdot u[k-1] + 0.4 \cdot u[k-2] - 0.2 \cdot u[k-3] + 0 \cdot u[k-4] \\
= -0.2 \cdot u[k-1] + 0.4 \cdot u[k-2] - 0.2 \cdot u[k-3]
\]

Die Impulsantwort des äquivalenten Hochpasses ist in der folgenden Abbildung dargestellt.
d) Die z-Transformierte der Differenzengleichung ergibt sich zu

\[Y(z) = U(z) \cdot (-0.2 \cdot z^{-1} + 0.4 \cdot z^{-2} - 0.2 \cdot z^{-3}) \]

und die Übertragungsfunktion lautet

\[\frac{Y(z)}{U(z)} = G(z) = -0.2 \cdot z^{-1} + 0.4 \cdot z^{-2} - 0.2 \cdot z^{-3} \]

10.9.9 Kompensation eines Halteglieds

Siehe Oppenheim FIR-Filter
11 Diskrete-Fourier-Transformation

Beider Schätzung von Spektren analoger Signale muss die gesamte Signalkette von der Wandlung bis zur Berechnung der Fourier-Transformierten analysiert werden. Dabei wird intensiv auf Effekte wie Leakage und Fensterung eingegangen.

11.1 Definition der Diskreten-Fourier-Transformation

11.1.1 Herleitung der Diskreten-Fourier-Transformation

Im Abschnitt 7.1.2 wird gezeigt, dass die Fourier-Transformierte eines abgetasteten Signals eine kontinuierliche Funktion ist, die aus einer unendlichen Summe entsteht.

\[X(\Omega) = \sum_{k=-\infty}^{\infty} x[k] \cdot e^{-j k \cdot \Omega} \] \hspace{1cm} (11.1)

Die Fourier-Transformierte $X(\Omega)$ ist periodisch in $2 \cdot \pi$. Da sie eine kontinuierliche Funktion ist, muss sie an unendlich vielen Stellen Ω bestimmt werden. Dazu sind unendlich viele Abtastwerte $x[k]$ erforderlich.
In der Signalverarbeitung können Signale nur mit einer endlichen Länge erfasst und verarbeitet werden. Sie stellen einen Ausschnitt des ursprünglichen Signals dar. Wird das Signal eine Beobachtungszeit T_B lang beobachtet, liegen von dem Signal N Abtastwerte mit den Indizes $k = 0 \ldots N - 1$ vor.

\[T_s = N \cdot T_A \quad (11.2) \]

Aus den N Gleichungen lässt sich die Fourier-Transformierte an N Stellen bestimmen. Da das Spektrum periodisch in $2 \cdot \pi$ ist, liegt es nahe, den Bereich von 0 bis $2 \cdot \pi$ in N gleich große Intervalle aufzuteilen. Daraus ergeben sich mit dem Index

\[n = 0 \ldots N - 1 \quad (11.3) \]

die normierten Kreisfrequenzen

\[\Omega_n = \frac{2 \cdot \pi \cdot n}{N} \quad (11.4) \]

beziehungsweise die Kreisfrequenzen

\[\omega_n = \frac{\Omega_n}{T_A} = \frac{2 \cdot \pi \cdot n}{T_A \cdot N} \quad (11.5) \]

Das Spektrum an diesen Stellen errechnet sich durch Einsetzen der entsprechenden Frequenzen in Gleichung (11.1) zu

\[X_n = \sum_{k=0}^{N-1} x[k] \cdot e^{-j \left(\frac{2 \cdot \pi \cdot n}{N} \right) k} \quad (11.6) \]

Beispiel: Rechteckfolge

Das Vorgehen bei der Diskreten-Fourier-Transformierten wird am Beispiel einer Rechteckfolge veranschaulicht. Sie besteht aus acht von null verschiedenen Abtastwerten und wird im Zeitraum von $0 \ldots 15 \cdot T_A$ beobachtet. Außerhalb dieses Zeitraums ist die Folge null.

\[x[k] = \sigma[k-2] - \sigma[k-7] \quad (11.7) \]

Die Frequenzen, an denen die Diskrete-Fourier-Transformierte berechnet wird, ergeben sich mit dem Index $n = 0 \ldots 15$ zu

\[\omega_n = \frac{\Omega_n}{T_A} = \frac{2 \cdot \pi \cdot n}{T_A \cdot N} \quad (11.8) \]

Die Diskrete-Fourier-Transformierte errechnet sich an diesen Stellen zu

\[X_n = \sum_{k=0}^{15} x[k] \cdot e^{-j \left(\frac{2 \cdot \pi \cdot n}{N} \right) k} = \sum_{k=2}^{6} 1 \cdot e^{-j \left(\frac{2 \cdot \pi \cdot n}{N} \right) k} \quad (11.9) \]
Die Berechnung muss nicht unbedingt als analytische Rechnung ausgeführt werden, sie kann wegen der endlichen Summe auch numerisch erfolgen. Das Signal und der Betrag des Spektrums sind in Bild 11.1 dargestellt.

Die Diskrete-Fourier-Transformierte soll mit dem Spektrum \(X(\Omega) \) verglichen werden, das sich aus der Fourier-Transformation der Folge ergibt.

\[
X(\Omega) = \sum_{k=2}^{6} e^{-jk\Omega} = e^{-j4\Omega} \cdot \sin\left(\frac{5 \cdot \Omega}{2}\right) \quad \sin\left(\frac{\Omega}{2}\right)
\]

(11.10)

Beide Spektren sind in Bild 11.2 dargestellt. Die periodische Fortsetzung der Diskreten-Fourier-Transformierten und die Fourier-Transformierte der Folge sind an den Punkten \(\Omega_n \) identisch. Allerdings liefert die Diskrete-Fourier-Transformierte nicht den bislang interpretierten Frequenzbereich von \(-\pi \ldots \pi\) sondern das Spektrum im Bereich von \(0 \ldots 2\pi\). Aufgrund der Periodizität der Fourier-Transformierten können die Darstellungen jedoch ineinander überführt werden.

Aufgrund der endlichen Anzahl von Abtastwerten kann das Spektrum mit der Diskreten-Fourier-Transformation nur an endlich vielen Stellen berechnet werden. Von daher stellt sich die Frage nach der maximalen Frequenz und der Auflösung des berechneten Spektrums.
Maximale Frequenz des Spektrums der Diskreten-Fourier-Transformation

Die maximale Frequenz der Diskreten-Fourier-Transformation ergibt sich aus dem Abtasttheorem. Mit diskreten Abtastwerten eines kontinuierlichen Signals werden nur die Kreisfrequenzen dargestellt, die kleiner sind als die halbe Abtastkreisfrequenz

\[\omega \leq \omega_{\text{max}} = \frac{\omega_A}{2} \]

Die maximale Frequenz der Diskreten-Fourier-Transformation wird deshalb schon mit dem Abtastvorgang festgelegt.

Spektrale Auflösung der Diskreten-Fourier-Transformation

Der Abstand zweier Frequenzwerte einer Diskreten-Fourier-Transformierten errechnet sich aus

\[\Delta \omega = \frac{2 \cdot \pi}{T_A \cdot N} \]

Für eine gute spektrale Auflösung, also kleine Frequenzabstände \(\Delta \omega \), muss die Anzahl \(N \) von Abtastwerten hoch gewählt werden. Wird für die Anzahl \(N \) nach Gleichung (11.12) das Verhältnis von Beobachtungszeit zur Abtastzeit eingesetzt, ergibt sich für die Auflösung

\[\Delta \omega = \frac{2 \cdot \pi}{T_A \cdot T_B} = \frac{2 \cdot \pi}{T_A} \]

Die Auflösung kann demnach nur durch eine Verlängerung der Beobachtungszeit \(T_B \) verbessert werden.

Beispiel: Signal zweier überlagerter Kosinusfunktionen

Die Bestimmung von Abtast- und Beobachtungszeit soll an einem Signal vertieft werden, das aus einer Summe zweier Kosinusfunktionen besteht. Es wird mit der Abtastzeit \(T_A \) abgetastet, sodass sich die Abtastwerte \(x[k] \) ergeben.

\[x[k] = A_1 \cdot \cos(\omega_0 \cdot k \cdot T_A) + A_2 \cdot \cos(2 \cdot \omega_0 \cdot k \cdot T_A) \]

Abtastzeit \(T_A \) und Beobachtungszeit \(T_B \) sollen so festgelegt werden, dass die Spektralanteile an den Frequenzen \(\omega_0 \) und \(2 \cdot \omega_0 \) zu erkennen sind. Die maximal auftretende Frequenz ist \(2 \cdot \omega_0 \). Daraus ergibt sich eine minimale Abtastfrequenz von

\[\omega_k \geq 2 \cdot \omega_{\text{max}} = 2 \cdot 2 \cdot \omega_0 = 4 \cdot \omega_0 \]

und eine maximale Abtastzeit von

\[T_A = \frac{\pi}{2 \cdot \omega_0} \]

Die spektrale Auflösung muss dem Abstand der beiden Frequenzen entsprechen.
\[
\Delta \omega = \omega_b = \frac{2 \cdot \pi}{N \cdot T_A} = \frac{2 \cdot \pi}{T_b}
\]

(11.17)

Daraus ergibt sich eine Beobachtungszeit von

\[
T_b = \frac{2 \cdot \pi}{\omega_b}
\]

(11.18)

Bild 11.3 stellt das abgetastete Signal \(x[k]\) mit \(\omega_b = 2 \cdot \pi/s\)

\[
x[k] = 1 \cdot \cos \left(\frac{2 \cdot \pi}{s} \cdot k \cdot T_A \right) + 1 \cdot \cos \left(\frac{4 \cdot \pi}{s} \cdot k \cdot T_A \right)
\]

(11.19)

und die berechnet Diskrete-Fourier-Transformierte dar.

Bild 11.3: Darstellung zweier Kosinus-Schwingungen im Zeit und Frequenzbereich

Die Spektralanteile an den Stellen \(2 \cdot \pi/s\) und \(4 \cdot \pi/s\) sind deutlich zu erkennen. Die doppelte Höhe der einzelnen Spektralanteile ergibt sich aus der gewählten Abtastzeit. An den Stellen \(\pm 4 \cdot \pi/s\) überlagern sich die beiden zwei Spektralanteile der Frequenzen \(\pm 4 \cdot \pi/s\). Streng genommen ist das Abtasttheorem verletzt, da die Abtastfrequenz genauso groß ist wie die doppelte Grenzfrequenz.

*

Beispiel: Interpretation der Impulsantwort eines PT2-Glieds

An dem Beispiel einer Impulsantwort eines Verzögerungsglieds zweiter Ordnung soll der praktische Nutzen der Diskreten-Fourier-Transformation verdeutlicht werden. Das Signal wird erzeugt durch Abtastung der Impulsantwort eines PT2-Glieds mit der Übertragungsfunktion

\[
G(s) = \frac{1}{1 + 2 \cdot d \cdot T \cdot s + T^2 \cdot s^2}
\]

(11.20)

mit \(T = 31 \text{ ms}\) und \(d = 0.06\). Bild 11.4 zeigt die zeitkontinuierliche Impulsantwort als Funktion der Zeit.
Die Impulsantwort wird für eine Dauer von 2 s mit $T_A = 1 \text{ ms}$ abgetastet, und die so entstandenen Folgenwerte $x[k]$ werden mithilfe der Diskreten-Fourier-Transformation transformiert. Das Ergebnis ist die Diskrete-Fourier-Transformierte X_n. Ihr Betrag ist in Bild 11.5 dargestellt.

Die Signale werden mit einer Abtastzeit von $T_A = 0.001 \text{ s}$ abgetastet. Wegen der Symmetrie des Spektrums ist die maximal auswertbare Frequenz die halbe Abtastfrequenz

$$\frac{\omega_A}{2} = \frac{\pi}{T_A} = 3141 \text{ rad }/s$$

(11.21)

Bild 11.6 zeigt den Amplitudengang in dem Spektralbereich von $0 \ldots \omega_A/2$ in logarithmischer Darstellung und zum Vergleich das Spektrum der zeitkontinuierlichen Funktion. Dabei wird das über die DFT berechnete Spektrum mit der Abtastzeit T_A multipliziert, um die aus der Abtastung resultierende Skalierung zu kompensieren.
Die Amplitudengänge stimmen in einem weiten Frequenzbereich überein, nur bei Frequenzen nahe der halben Abtastfrequenz ergeben sich Abweichungen aufgrund der periodischen Wiederholung. Der Phasengang für das System \(G(s) \) ergibt sich in analoger Weise, er ist in **Fehler! Verweisquelle konnte nicht gefunden werden.** dargestellt. Der Phasengang des abgetasteten und des zeitkontinuierlichen Systems stimmen überein.

11.1.2 Inverse Diskrete-Fourier-Transformierte

Zu der Diskreten-Fourier-Transformation existiert eine inverse Diskrete-Fourier-Transformation, mit der aus den Werten \(X_n \) die abgetastete Folge \(x[k] \) berechnet werden kann.

\[
x[k] = \frac{1}{N} \sum_{n=0}^{N-1} X_n \cdot e^{j \frac{2 \pi k n}{N}} \quad (11.22)
\]

Zum Beweis dieser Umkehrformel wird in Gleichung (11.22) die Gleichung zur Bestimmung der Fourier-Koeffizienten \(X_n \)

\[
X_n = \sum_{k=0}^{N-1} x[k] \cdot e^{-j \frac{2 \pi k n}{N}} \quad (11.23)
\]
eingesetzt. Daraus ergibt sich

\[
x[k] = \frac{1}{N} \sum_{n=0}^{N-1} X_n \cdot e^{j \frac{2 \pi k n}{N}} = \frac{1}{N} \sum_{n=0}^{N-1} \sum_{m=0}^{N-1} x[m] \cdot e^{-j \frac{2 \pi n m}{N}} \cdot e^{j \frac{2 \pi k n}{N}} = \frac{1}{N} \sum_{m=0}^{N-1} x[m] \sum_{n=0}^{N-1} e^{j \frac{2 \pi n (k-m)}{N}} \quad (11.24)
\]

Die Summe von komplexen Exponentialfunktionen ist nur dann von null verschieden, wenn \(k = m \) ist. Für \(k = m \) wird der Ausdruck

\[
e^{j \frac{2 \pi n (k-m)}{N}} = 1 \quad (11.25)
\]
N-mal aufsummiert, das Ergebnis beträgt damit N. Für ein bestimmtes \(k \) existiert damit nur ein Element, das nicht null wird.

\[
x[k] = \frac{1}{N} \sum_{m=0}^{N-1} x[m] \cdot \sum_{n=0}^{N-1} e^{j2\pi \frac{k}{N}(k-m)} = \frac{1}{N} \cdot x[k] \cdot N = x[k]
\]

(11.26)

Anhand der Gleichung (11.22) zur Rücktransformation wird deutlich, dass die zu dem diskreten Spektrum \(X_n \) gehörige Folge \(x[k] \) ebenfalls periodisch in \(N \) ist. Die Folge \(x[k] \) wird bei der Rekonstruktion über den Beobachtungszeitraum periodisch fortgesetzt und besitzt dort nach der Rekonstruktion nicht den vielleicht erwarteten Wert null.

Dieser Zusammenhang zwischen kontinuierlichen und diskreten Signalen und ihren Spektren wird anhand eines Gauß-Impulses verdeutlicht. Der Gauß-Impuls hat die Zeitfunktion

\[
x(t) = \frac{1}{\sqrt{T}} e^{-\frac{t^2}{2T}}
\]

(11.27)

Mithilfe der Fourier-Transformation für zeitkontinuierliche Signale kann das Spektrum berechnet werden zu

\[
X(\omega) = \sqrt{\pi} \cdot e^{-\frac{T^2}{4\omega^2}}
\]

(11.28)

Bild 11.7 zeigt das Signal \(x(t) \) und das zugehörige Spektrum \(X(\omega) \).

Bild 11.7: Gauß-Impuls und sein Spektrum für das zeitkontinuierliche Signal

Nach idealer Abtastung des Signals im Zeitbereich liegen die Funktionswerte nur noch an den Stellen \(k \cdot T_A \) vor. Durch die Diskretisierung wird das Signal im Frequenzbereich in \(\omega_A \) periodisch fortgesetzt und mit einem Faktor \(1/T_A \) multipliziert. Bild 11.8 zeigt das abgetastete Signal im Zeitbereich und den Betrag des periodisch fortgesetzten Spektrums.
Zur numerischen Verarbeitung wird das Spektrum an \(N = 10 \) Stellen diskretisiert. Durch die Diskretisierung wird das Signal im Zeitbereich periodisch in \(10 \cdot T_A \) fortgesetzt. Das Ergebnis ist in Bild 11.9 dargestellt.

Das mit der Diskreten-Fourier-Transformation berechnete Spektrum ist nur an einzelnen Stellen definiert, es ist keine kontinuierliche Funktion mehr. Das Spektrum wird als Linienspektrum bezeichnet.

Beispiel: Inverse DFT des Signals zweier überlagerter Kosinusfunktionen

Zur Verdeutlichung der inversen DFT wird das Beispiel der beiden Kosinusfunktionen aus Gleichung (11.14) aufgegriffen. Die Diskrete-Fourier-Transformierte hatte die Werte

\[X_n = (0 \quad 2 \quad 4 \quad 2) \quad \text{(11.29)} \]

Die Rücktransformation ergibt

\[
x[k] = \frac{1}{N} \sum_{n=0}^{N-1} X_n \cdot e^{\frac{j 2 \pi n k}{N}} - \frac{1}{2} \sum_{n=0}^{3} X_n \cdot e^{\frac{j 2 \pi n k}{4}} \quad \text{(11.30)}
\]

Eine numerische Auswertung führt erwartungsgemäß zu den Werten

\[x[k] = (2 \quad -1 \quad 0 \quad -1) \quad \text{(11.31)} \]

Das Beispiel macht deutlich, dass die Diskrete-Fourier-Transformation eindeutig umkehrbar ist.

11.1.3 Diskrete-Fourier-Transformation und komplexe Fourier-Reihe

Die Darstellungen im Abschnitt 11.1.2 zeigen, dass durch die Diskretisierung des Spektrums die Abtastfolge \(x[k] \) periodisch in \(N \) wiederholt wird. Daraus ergibt sich ein Zusammenhang zur Fourier-Reihe, die periodische Funktionen mit einer Reihe von harmonischen Funktionen beschreibt. Dieser Zusammenhang wird in diesem Abschnitt diskutiert.

Die Fourier-Koeffizienten \(A_n \) der Fourier-Reihe eines in \(T_B \) periodischen Signals \(x(t) \) ergeben sich aus

\[
A_n = \frac{1}{T_B} \int_{0}^{T_B} x(t) \cdot e^{-j \frac{2 \pi n t}{T_B}} \, dt \quad \text{(11.32)}
\]

Nach dem Abtastvorgang liegt die Funktion \(x(t) \) nur noch in Form von Abtastwerten \(x[k] = x(k \cdot T_A) \) vor, sodass das Integral durch eine Summe approximiert werden muss. Dabei geht die kontinuierliche Zeit \(t \) in diskrete Zeitpunkte \(k \cdot T_A \) über, und die Beobachtungszeit kann dargestellt werden als

\[
T_B = N \cdot T_A \quad \text{(11.33)}
\]

Daraus folgt für die Fourier-Koeffizienten \(A_n \) approximativ

\[
A_n = \frac{1}{N \cdot T_A} \sum_{k=0}^{N-1} x[k] \cdot e^{-j \frac{2 \pi n k}{N T_A}} \cdot T_A = \frac{1}{N} \sum_{k=0}^{N-1} x[k] \cdot e^{-j \frac{2 \pi n k}{N}} = \frac{1}{N} \cdot X_n \quad \text{(11.34)}
\]

Die Approximation der komplexen Fourier-Koeffizienten \(A_n \) der in \(T_B \) periodischen Funktion \(x(t) \) über eine Riemannsche Summe entspricht bis auf einen Faktor \(1/N \) den Werten der diskreten Fourier-Transformation \(X_n \). Daraus resultiert ein alternativer Weg zur Herleitung der Diskreten-Fourier-Transformation, der hier nicht weiter verfolgt werden soll.
Abschließend fasst Tabelle 11.1 die mathematischen Eigenschaften der Diskreten-Fourier-Transformation zusammen.

<table>
<thead>
<tr>
<th>Eigenschaft</th>
<th>Mathematische Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diskrete-Fourier-Transformation</td>
<td>(X_n = \sum_{k=0}^{N-1} x[k] \cdot e^{-j \frac{2\pi n k}{N}})</td>
</tr>
<tr>
<td>Frequenzen</td>
<td>(\omega_n = \frac{\Omega_n}{T_A} = \frac{2 \cdot \pi \cdot n}{T_A \cdot N})</td>
</tr>
<tr>
<td>Maximale Frequenz</td>
<td>(\omega_{max} = \frac{\omega_A}{2})</td>
</tr>
<tr>
<td>Spektrale Auflösung</td>
<td>(\Delta \omega = \frac{2 \cdot \pi}{T_A \cdot N} = \frac{2 \cdot \pi}{T_B})</td>
</tr>
<tr>
<td>Inverse Diskrete-Fourier-Transformation</td>
<td>(x[k] = \frac{1}{N} \sum_{n=0}^{N-1} X_n \cdot e^{j \frac{2\pi n k}{N}})</td>
</tr>
<tr>
<td>Approximation der komplexen Fourier-Reihe</td>
<td>(A_n = \frac{1}{N} \cdot X_n)</td>
</tr>
</tbody>
</table>
11.2 Eigenschaften der Diskreten-Fourier-Transformation

Die Diskrete-Fourier-Transformation hat Eigenschaften, die zum großen Teil vergleichbar zur Fourier-Transformations für Folgen sind. Aufgrund der periodischen Fortsetzung der Signalfolge über das Beobachtungsfenster hinaus ergeben sich teilweise neue Aspekte. Da die Diskrete-Fourier-Transformation typischerweise nicht analytisch bestimmt wird, sind die Rechenregeln nur zum allgemeinen Verständnis und für die Herleitung effizienter Algorithmen wie der Fast-Fourier-Transformation von Bedeutung.

11.2.1 Periodizität

Die Diskrete-Fourier-Transformierte ist periodisch in N. Über die Umrechnung der Definitionsgleichung ergibt sich

\[X_n = \sum_{k=0}^{N-1} x[k] \cdot e^{-j\frac{2\pi nk}{N}} = \sum_{k=0}^{N-1} x[k] \cdot e^{-j\frac{2\pi nk}{N}} \cdot e^{-j\frac{2\pi n}{N}} = \sum_{k=0}^{N-1} x[k] \cdot e^{-j\frac{2\pi n}{N}} = X_n \]
\[(11.35) \]

Die Diskrete-Fourier-Transformierte ist an den Stellen \(\Omega_n \) mit der Fourier-Transformierten der zugrunde liegenden Folge identisch. Da die Fourier-Transformierte für Signalfolgen periodisch ist, muss auch die Diskrete-Fourier-Transformierte periodisch sein. Aus der Gleichung für die inverse Diskrete-Fourier-Transformation ergibt sich, dass auch die Signalfolge \(x[k] \) periodisch in N ist.

\[x[k - N] = \frac{1}{N} \sum_{n=0}^{N-1} X_n \cdot e^{j\frac{2\pi nk}{N}} = \frac{1}{N} \sum_{n=0}^{N-1} X_n \cdot e^{j\frac{2\pi nk}{N}} \cdot e^{j\frac{2\pi n}{N}} \]
\[= \frac{1}{N} \sum_{n=0}^{N-1} X_n \cdot e^{j\frac{2\pi n}{N}} = x[k] \]
\[(11.36) \]

11.2.2 Linearität

Die Diskrete-Fourier-Transformierte einer Linearkombination von zwei Signalfolgen \(x_1[k] \) und \(x_2[k] \) gleicher Länge ergibt sich aus derselben Linearkombination \(X_1[n] \) und \(X_2[n] \) der jeweiligen Diskreten-Fourier-Transformierten \(X_1[n] \) und \(X_2[n] \).

\[X_n = \sum_{k=0}^{N-1} (a \cdot x_1[k] + b \cdot x_2[k]) \cdot e^{-j\frac{2\pi nk}{N}} = \sum_{k=0}^{N-1} a \cdot x_1[k] \cdot e^{-j\frac{2\pi nk}{N}} + \sum_{k=0}^{N-1} b \cdot x_2[k] \cdot e^{-j\frac{2\pi nk}{N}} \]
\[= a \cdot X_1[n] + a \cdot X_2[n] \]
\[(11.37) \]

Wie bei der Fourier-Transformation von Signalfolgen gilt also das Linearitätsprinzip.
11.2.3 Symmetrie der Diskreten-Fourier-Transformierten reeller Signalfolgen

Die Diskrete-Fourier-Transformierte reeller Folgen hat eine konjugiert komplexe Symmetrie. Die Symmetrie kann durch Umformen der Definitionsleichung aufgezeigt werden.

\[
X_n = \sum_{k=0}^{N-1} x[k] \cdot e^{-j\frac{2\pi n k}{N}} = \sum_{k=0}^{N-1} x[k] \cdot e^{-j\frac{2\pi n k}{N}} \cdot e^{-j\frac{2\pi k}{N}} = \sum_{k=0}^{N-1} x[k] \cdot e^{-j\frac{2\pi (n+k)}{N}} = X_{-n}^* \tag{11.38}
\]

Tabelle 11.2: Symmetrieregeln der Fourier-Transformation für komplexe Signalfolgen

<table>
<thead>
<tr>
<th>Folge x[k]</th>
<th>Diskrete-Fourier-Transformierte X_n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gerade Folge x[k]</td>
<td>Reelles Spektrum X_n</td>
</tr>
<tr>
<td>Ungerade Folge x[k]</td>
<td>Imaginäres Spektrum X_n</td>
</tr>
<tr>
<td>x'[k]</td>
<td>X_{-n}^*</td>
</tr>
<tr>
<td>x'[-k]</td>
<td>X'</td>
</tr>
</tbody>
</table>

11.2.4 Dualität der Diskreten-Fourier-Transformation

Die Definitionsleichung der Diskreten-Fourier-Transformation

\[
X_n = \sum_{k=0}^{N-1} x[k] \cdot e^{-j\frac{2\pi n k}{N}} \tag{11.39}
\]

und der inversen Diskreten-Fourier-Transformation

\[
x[k] = \frac{1}{N} \sum_{n=0}^{N-1} X_n \cdot e^{j\frac{2\pi n k}{N}} \tag{11.40}
\]

sind sich mathematisch sehr ähnlich. Sie unterscheiden sich um einen Faktor 1/N und im Vorzeichen des Exponenten der Exponentialfunktion. Aus dieser Symmetrie ergeben sich weitere Interpretationsmöglichkeiten. Zum Beispiel errechnet sich bei bekannter periodischer Diskrete-Fourier-Transformierte X_n einer periodischen Signalfolge x[k] das Spektrum der Signalfolge y[k] = X_k zu

\[
Y_n = \sum_{k=0}^{N-1} y[k] \cdot e^{-j\frac{2\pi n k}{N}} = N \cdot x[-k] \tag{11.41}
\]
Beispiel: Dualität der Diskreten-Fourier-Transformation

Eine in N periodisch wiederholten Impulsfolge $\delta[k]$ kann als Summe dargestellt werden.

$$x[k] = \sum_{n=-\infty}^{\infty} \delta[k-n\cdot N]$$ \hspace{1cm} (11.42)

Die Diskrete-Fourier-Transformierte wird über einen Signalausschnitt der Länge N berechnet.

$$X_n = \sum_{k=0}^{N-1} x[k] \cdot e^{-j\frac{2\pi}{N} k} = \sum_{k=0}^{N-1} \delta[k] \cdot e^{-j\frac{2\pi}{N} k} = 1$$ \hspace{1cm} (11.43)

Mit dieser Korrespondenz und der Dualität kann die Diskrete-Fourier-Transformierte der Folge $y[k] = 1$ berechnet werden. Es gilt der Zusammenhang

$$y[k] = X_n = 1$$ \hspace{1cm} (11.44)

Mit der Dualität der Diskreten-Fourier-Transformierten ergibt sich

$$Y_n = N \cdot x[-k] = N \sum_{n=-\infty}^{\infty} \delta[-(k-n\cdot N)] = N \sum_{n=-\infty}^{\infty} \delta[-k+n\cdot N]$$ \hspace{1cm} (11.45)

Bild 11.10 stellt die Diskreten-Fourier-Transformierten für die periodische Impuls- und die Einsfolge als Beispiel für Dualität dar. Es werden $N = 16$ Abtastwerte ausgewertet.

Bild 11.10: Darstellung der Diskreten-Fourier-Transformierten für Impuls- und Einsfolge
Diese Dualität existiert in analoger Weise für die Fourier-Transformation zeitkontinuierlicher Signale. Im Gegensatz zur Diskreten-Fourier-Transformation weist die Fourier-Transformation von Signalfolgen dieses Dualitätsprinzip nicht auf, da das Signal $x[k]$ eine Folge und das Spektrum $X(\Omega)$ eine kontinuierliche Funktion ist.

11.2.5 Zeitverschiebung

Die Diskrete-Fourier-Transformierte einer verschobenen Folge $x[k-k_0]$ kann aus der Diskreten-Fourier-Transformation der nicht verschobenen Folge berechnet werden.

\[
\sum_{k=0}^{N-1} x[k-k_0] \cdot e^{-j \frac{2 \pi n k}{N}} = \sum_{k=0}^{N-1} x[k-k_0] \cdot e^{-j \frac{2 \pi n (k-k_0)}{N}} \cdot e^{-j \frac{2 \pi n k_0}{N}} \equiv e^{-j \frac{2 \pi n k_0}{N}} \cdot \sum_{k=0}^{N-1} x[k] \cdot e^{-j \frac{2 \pi n k}{N}} = e^{-j \frac{2 \pi n k_0}{N}} \cdot X_n.
\]

(11.46)

Dies entspricht sinngemäß den Regeln der Verschiebungsregel der Fourier-Transformation für Signalfolgen. Zu beachten ist, dass in diesem Fall $x[k]$ nicht die Folge in der Beobachtungszeit T_B ist, sondern die periodische Fortsetzung dieser Folge. Wegen der periodischen Fortsetzung wird die Zeitverschiebung auch als zirkuläre Verschiebung der Folge bezeichnet.

11.2.6 Periodische Faltung

Beispiel: Periodische Faltung der Diskreten-Fourier-Transformation

Gegeben sind die beiden untenstehenden Folgen $x_1[k]$ und $x_2[k]$.

\[
y[k] = x_1[k] \ast x_2[k]
\]

(11.47)

Diese Faltung kann zum Beispiel als grafische Faltung ausgeführt werden. Für das Signal $y[k]$ ergeben sich die in Tabelle 11.3 dargestellten Werte.
Tabelle 11.3: Ergebnis der Faltung der Signalfolgen $x_1[k]$ und $x_2[k]$ im Zeitbereich

<table>
<thead>
<tr>
<th>k</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>$y[k]$</td>
<td>4</td>
<td>14</td>
<td>17</td>
<td>41</td>
<td>40</td>
<td>31</td>
<td>40</td>
</tr>
<tr>
<td>$y_{DFT}[k]$</td>
<td>44</td>
<td>45</td>
<td>57</td>
<td>41</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 11.4: Diskrete-Fourier-Transformierte X_1 und X_2 der Signalfolgen $x_1[k]$ und $x_2[k]$

<table>
<thead>
<tr>
<th>n</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>X_{n1}</td>
<td>11</td>
<td>-1 + 2j</td>
<td>-5</td>
<td>-1 - 2j</td>
</tr>
<tr>
<td>X_{n2}</td>
<td>17</td>
<td>1 + 6j</td>
<td>-3</td>
<td>1 - 6j</td>
</tr>
<tr>
<td>Y_n</td>
<td>187</td>
<td>-13 - 4j</td>
<td>15</td>
<td>-13 + 4j</td>
</tr>
</tbody>
</table>

Damit das Ergebnis der periodischen Faltung über die DFT dem Ergebnis der aperiodischen Faltung entspricht, müssen die beiden Signale jeweils mit mindestens $N - 1$ Nullen aufgefüllt werden, in diesem Fall also mit drei Nullen.
11.3 Spektralschätzung mithilfe der Diskreten-Fourier-Transformation

11.3.1 Signalfluss und Einflüsse auf die Spektralschätzung

Bild 11.12 zeigt den Signalfluss, der bei der Spektralschätzung verwendet wird, mit den entsprechenden Signalbezeichnungen im Zeit- und Frequenzbereich.

Der Signalfluss beginnt mit dem zeitkontinuierlichen Signal $x(t)$ mit dem zu schätzenden Spektrum $X(\omega)$. Damit bei der Abtastung des Signals Aliasing vermieden wird, muss das Signal bandbegrenzt sein. Ist das nicht der Fall, wird das Signal mit einem Anti-Aliasing-Filter bandbegrenzt, damit das Abtasttheorem eingehalten wird. Das bandbegrenzte Signal $x_{TP}(t)$ weist das Spektrum $X_{TP}(\omega)$ auf.

$$X_{TP}(\omega) = G_{TP}(\omega) \cdot X(\omega) \quad (11.48)$$

Spektralanteile des Signals $x(t)$, die bei der Tiefpass-Filterung eliminiert werden, stehen nicht mehr zur Verfügung. Der folgende Prozess kann deshalb bestenfalls das Spektrum $X_{TP}(\omega)$ bestimmen. Nur wenn das Signal $x(t)$ bereits bandbegrenzt ist, sind die Spektren $X(\omega)$ und $X_{TP}(\omega)$ identisch.

Im nächsten Schritt wird das Signal abgetastet, wobei hier von der idealen Abtastung ausgegangen wird. Nach den Ausführungen in Kapitel 2 wird durch die Abtastung des Signals das Spektrum periodisch in ω_A wiederholt und mit dem Faktor $1/T_A$ multipliziert. Nach dem Abtasten ergibt sich damit das Spektrum

$$X_A(\omega) = \frac{1}{T_A} \cdot \sum_{k=-\infty}^{\infty} X_{TP}(\omega - k \cdot \omega_A) \quad (11.49)$$

Im Fall einer nicht idealen Abtastung kann die dadurch entstehende Veränderung des Spektrums durch einen inversen Filter kompensiert werden. Das entsprechende Vorgehen ist in Aufgabe 10.8.8 skizziert.
Der Übergang des ideal abgetasteten Signals $x_A(t)$ zur diskreten Signalfolge $x_D[k]$ ist formeller Natur. Unter der Bedingung $\Omega = \omega \cdot T_A$ ist das Spektrum $X_A(\omega)$ identisch zu dem Spektrum der Signalfolge $x_D[k]$, das sich mit der Fourier-Transformation für Signalfolgen berechnet zu

$$X_D(\Omega) = \sum_{k=-\infty}^{\infty} x_D[k] \cdot e^{-j k \Omega} \quad (11.50)$$

Die Signalfolge $x_D[k]$ erstreckt sich im Allgemeinen von $-\infty \leq k \leq \infty$, sie ist also unendlich lang. Für die Verarbeitung muss sie auf eine endliche Anzahl von N Abtastwerten reduziert werden. Dazu wird sie mit einer Fensterfunktion der Länge T_B multipliziert. Sie ist ein Vielfaches der Abtastzeit T_A.

$$T_B = N \cdot T_A \quad (11.51)$$

Damit liegen von dem Signal N Abtastwerte mit den Indizes $k = 0 \ldots N - 1$ vor, und die Signalfolge ist zeitbegrenzt. Wird als Fensterfunktion ein Rechteckfenster verwendet, ergibt sich

$$x_w[k] = x_D[k] \cdot w[k] = x_D[k] \cdot \left(\sigma[k] - \sigma[k - N]\right) \quad (11.52)$$

Der Multiplikation im Zeitbereich entspricht die Faltung im Frequenzbereich. Durch die Fensterung wird das Spektrum $X_D(\Omega)$ mit dem Spektrum der verwendeten Fensterfunktion $W(\Omega)$ gefaltet. Das Spektrum der mit einem Rechteckfenster multiplizierten Signalfolge ergibt sich zu

$$X_w(\Omega) = X(\Omega) \ast W(\Omega) = X(\Omega) \ast \frac{\sin \left(\frac{N \cdot \Omega}{2}\right)}{\sin \left(\frac{\Omega}{2}\right)} \cdot e^{-j N \Omega / 2} \quad (11.53)$$

Die Zeitbegrenzung führt zur Faltung des Spektrums mit dem sogenannten Dirichlet-Kern, was zu einer Veränderung des Spektrums führt. Die Veränderung des Spektrums durch die Faltung mit dem Spektrum der Fensterfunktion wird als Leck-Effekt (Leakage) bezeichnet. Dieser Effekt wird in Abschnitt 11.3.2 wieder aufgegriffen. Da nur N Abtastwerte vorliegen, kann die Fourier-Transformierte $X_w(\Omega)$ nur an N Stellen definiert werden.

$$\Omega_n = \frac{2 \cdot \pi \cdot n}{N} \quad (11.54)$$

Das Spektrum X_n an diesen Stellen errechnet sich durch Einsetzen der entsprechenden Frequenzen Ω_n in Gleichung (11.50) zu

$$X_n(\Omega_n) = X_n = \sum_{k=0}^{N-1} x_w[k] \cdot e^{-j \left(2 \pi \frac{n}{N}\right)} \quad (11.55)$$
Die Herleitung zeigt, dass das berechnete Spektrum X_n aus folgenden Gründen nicht dem Spektrum $X(\omega)$ des Signals $x(t)$ entspricht:

- Es liegen nur einzelne Werte X_n des Spektrums vor, $X(\omega)$ ist eine kontinuierliche Funktion. Die kontinuierliche Funktion muss aus den Abtastwerten rekonstruiert werden.
- Das Signal $x_w[k]$ ist gegenüber dem Signal $x[k]$ zeitbegrenzt. Deshalb wird das ursprüngliche Spektrum mit dem Spektrum der verwendeten Fensterfunktion gefaltet.
- Das Spektrum ist mit dem Faktor $f_A = 1/T_A$ multipliziert. Diese Multiplikation muss rückgängig gemacht werden.
- Das Signal $x(t) \text{ muss für die Abtastung ggf. bandbegrenzt werden.}$

Das berechnete Spektrum $T_A \cdot X_n$ ist demnach eine Schätzung oder Approximation des zu bestimmenden Spektrums $X(\omega)$. Daraus ergibt sich die Bezeichnung Spektralschätzung.

11.3.2 Auswirkung einer Fensterung von Signalen – Leakage

\[w[k] = \sigma[k] - \sigma[k - N] \quad (11.56) \]

Das zeitlich begrenzte Signal hat damit die Beschreibung

\[x_w[k] = x_d[k] \cdot w[k] \quad (11.57) \]

Nach den Rechenregeln zur Fourier-Transformation berechnet sich das Spektrum $X_w(\Omega)$ des zeitlich begrenzten Signals $x_w[k]$ aus der Faltung der Spektren $X_d(\Omega)$ und $W(\Omega)$. Das Spektrum $W(\Omega)$ wird als Dirichlet-Kern bezeichnet und berechnet sich zu

\[W(\Omega) = e^{-j\frac{\Omega(N-1)}{2}} \cdot \frac{\sin\left(\frac{N \cdot \Omega}{2}\right)}{\sin\left(\frac{\Omega}{2}\right)} \quad (11.58) \]

Der Betrag des Spektrums $W(\Omega)$ ist für unterschiedliche Beobachtungszeiten in Bild 11.13 dargestellt.
Der Effekt der Zeitbegrenzung ist von der Beobachtungszeit T_B abhängig. Die ersten Nulldurchgänge liegen jeweils an den Stellen

$$\Omega = \frac{2 \cdot \pi}{N}$$ \hspace{1cm} (11.59)

Mit wachsender Anzahl von Abtastwerten N sinkt demnach die Breite des Spektrums. Das Spektrum nähert sich mit wachsender Anzahl N von Abtastwerten einer Impulsfunktion, die bei der Faltungsoperation das Spektrum unverändert lassen würde. Die Auswirkung der Fensterung wird am Beispiel eines harmonischen Signals diskutiert.

Beispiel: Diskrete-Fourier-Transformation einer harmonischen Signalfolge

Der Effekt der Fensterung wird am Beispiel einer harmonischen Signalfolge erläutert. Sie ist definiert als

$$x[k] = \cos\left(\frac{2 \cdot \pi}{N_\theta} \cdot k\right) = \cos(\Omega_0 \cdot k)$$ \hspace{1cm} (11.60)

Die Signalfolge weist das Spektrum

$$X(\Omega) = \pi \cdot \left(\delta(\Omega + \Omega_0) + \delta(\Omega - \Omega_0)\right)$$ \hspace{1cm} (11.61)

dauf. Signalfolge und Spektrum sind für $\Omega_0 = \pi/5$ in Bild 11.14 dargestellt.

Bild 11.14: Darstellung einer zeitdiskreten Kosinusfunktion und ihres Spektrums

Das Spektrum der Fensterfunktion hat keine Auswirkungen auf die berechnete Diskrete-Fourier-Transformierte, weil es an allen Stellen $\Omega_n \neq \Omega_0$ den Wert 0 aufweist. Weiterhin ist der Wert Ω_0 ein Vielfaches der Auflösung $\Delta \Omega$, die entsprechende Amplitude wird deshalb bei der Diskreten-Fourier-Transformierten wirklich berechnet. Bild 11.16 zeigt außerdem, dass eine periodische Fortsetzung der Signalfolge zur ursprünglichen nicht zeitbegrenzten Signalfolge führen würde.

Bild 11.16: Zeitlich begrenzte Signalfolge $x_w[k]$ und die periodische Fortsetzung

$$\Omega_n = \frac{2 \cdot \pi \cdot n}{N} \quad (11.62)$$

Damit entspricht kein Wert Ω_n dem eigentlich vorliegenden Wert Ω_0, die DFT ist deshalb nur eine Näherung des erwarteten Spektrums.

Die einzelnen Werte der Diskreten-Fourier-Transformierten liegen auf dem Spektrum $X_w(\Omega)$, das wegen der längeren Beobachtungszeit jedoch deutlich schmaler ist. Außerdem ist mit der längeren Beobachtungsduer die spektrale Auflösung gestiegen, was in den reduzierten Abstand $\Delta \Omega$ der Stützstellen resultiert.

Der hier an dem Beispiel eines harmonischen Signals dargestellte Leakage-Effekt gilt sinngemäß für beliebige Signale. Die Beispiele in Abschnitt 11.1 sind so gewählt, dass sich keine Sprungsstellen ergeben und sich der Leakage-Effekt praktisch nicht bemerkbar macht.

Im Online-Portal *Systemtheorie Online* verdeutlicht die Applikation Leakage-Effekt die Auswirkung der Fensterung im Zeitbereich auf das Spektrum.
11.3.3 Alternative Fensterfunktion zur Reduzierung des Leakage-Effektes

Das zu analysierende Signal wird mit der Hann-Fensterfunktion multipliziert. Dadurch, dass die Fensterfunktion am Beginn und am Ende des Beobachtungszeitraums stetig auf den Wert null zugeht, wird der Übergang zwischen dem Signal und seiner periodischen Fortsetzung geglättet.

\[x_w[k] = x_b[k] \cdot w[k] \] (11.63)

Nach den Rechenregeln zur Fourier-Transformation berechnet sich das Spektrum \(X_w(\Omega) \) des zeitlich begrenzten Signals \(x_w[k] \) aus der Faltung der Spektren \(X_d(\Omega) \) und \(W(\Omega) \). Idealerweise wäre ein Spektrum, das aus einem Impuls an der Stelle \(\Omega = 0 \) besteht, da die Faltung des Spektren \(X_d(\Omega) \) mit dem Impuls \(\delta(\Omega) \) das Spektrum unverändert ließe. Allerdings entspricht dem Spektrum \(W(\Omega) = \delta(\Omega) \) im Zeitbereich die Fensterfunktion \(w[k] = 1 \), die unendlich lang ist und damit zu einer unendlich langen Beobachtungszeit führen würde. Es muss also eine Fensterfunktion \(w[k] \) gefunden werden, die zum einen endlich ist und zum Anderen ein Spektrum aufweist, das einer Impulsfunktion \(\delta(\Omega) \) möglichst nahekommmt. Zur Diskussion unterschiedlicher Fensterfunktionen ist in Bild 11.20 das Spektrum des Rechteck-Fensters dargestellt.

Das Spektrum besteht aus einem Hauptschwinger (Main-Lobe) und den Nebenschwingern (Side-Lobes). Die Spektren realer Fensterfunktionen haben eine endliche Breite des Hauptmaximums, und

- **Breite des Hauptmaximums**
 Die Breite des Hauptmaximums ist der Frequenzbereich zwischen $\Omega = 0$ und dem ersten Nulldurchgang des Spektrums Ω_S. Eine gute Fensterfunktion hat eine geringe Breite des Hauptmaximums, da dadurch bei der Faltung das Spektrum der gefensterten Funktion weniger stark verbreitert wird.

- **Relative Amplitude des ersten Nebenmaximums**
 Die relative Amplitude des Nebenmaximums ist das Verhältnis von Maximum des Nebenmaximums A_{SL} zu dem Hauptmaximum A_{ML}. Die relative Amplitude wird in dB angegeben.

$$a_{REL} = 20 \cdot \log \left(\frac{A_{SL}}{A_{ML}} \right)$$ \hspace{1cm} (11.64)

Zielwert ist eine geringe Höhe des Nebenmaximums, also eine kleine relative Amplitude des Nebenmaximums.

Mit der Bestimmung des idealen Fensters beschäftigen sich viele Veröffentlichungen. Es zeigt sich, dass ein ideales Fenster nicht existiert, sondern dass ein Kompromiss zwischen endlicher Breite und relativer Amplitude des Nebenmaximums eingegangen werden muss. Einige Fenster werden im Folgenden beschrieben. Dabei wird zur Vereinfachung der Darstellung von einer Fensterfunktion ausgegangen, die symmetrisch zum Zeitpunkt $k = 0$ liegt. Diese Fenster sind nicht kausal, können aber durch eine Zeitverschiebung in kausale Fenster überführt werden.

Rechteckfenster

Das Rechteckfenster wird bei gerader Filterordnung N im Zeitbereich über die Gleichung

$$w_{REC}[k] = \sigma \left(k + \frac{N-1}{2} \right) - \sigma \left(k - \frac{N+1}{2} \right)$$ \hspace{1cm} (11.65)

beschrieben und hat als Spektrum den sogenannten Dirichlet-Kern

$$W_{REC}(\Omega) = \frac{\sin \left(\frac{N \cdot \Omega}{2} \right)}{\sin \left(\frac{\Omega}{2} \right)}$$ \hspace{1cm} (11.66)

Das Rechteckfenster und der normierte Amplitudengang sind in Bild 11.21 dargestellt.
Das Hauptmaximum des Rechteckfensters hat eine Breite von $\Omega_S = 2 \cdot \pi / N$. Die relative Amplitude des Nebenmaximums beträgt $a_{REL} = -13$ dB.

Dreieck- oder Bartlett-Fenster

Das Dreieckfenster wird im Zeitbereich über die Gleichung

$$w_{TRI}[k] = \left(k + \frac{N-1}{2} \right) \cdot \sigma \left(k + \frac{N-1}{2} \right) - 2 \cdot k \cdot \sigma[k] + \left(k - \frac{N-1}{2} \right) \cdot \sigma \left(k - \frac{N-1}{2} \right)$$ \hspace{1cm} (11.67)

beschrieben und hat das Spektrum

$$W_{TRI}(\Omega) = \frac{\sin^2 \left(\frac{N \cdot \Omega}{4} \right)}{\sin^2 \left(\frac{\Omega}{2} \right)}$$ \hspace{1cm} (11.68)

Das Dreieckfenster und der normierte Amplitudengang sind in Bild 11.22 dargestellt.

Das Hauptmaximum des Dreieckfensters hat eine Breite von $\Omega_S = 4 \cdot \pi / N$. Die relative Amplitude des Nebenmaximums beträgt $a_{REL} = -25$ dB.
Hann-Fenster

Auch das Hann-Fenster weist am Beginn und am Ende der Beobachtungszeit keine Sprünge auf, sondern geht an diesen Punkten gegen den Wert 0. Der stetige Übergang wird mit einer Kosinusfunktion beschrieben.

\[w_{\text{HAN}}[k] = \left(0.5 + 0.5 \cdot \cos \left(\frac{2 \cdot \pi \cdot k}{N} \right)\right) \left(\sigma \left(k + \frac{N-1}{2}\right) - \sigma \left(k - \frac{N+1}{2}\right)\right) \] \hspace{1cm} (11.69)

Die Fensterfunktion ergibt sich aus dem Produkt von Rechteckfenster und der Kosinusfunktion. Das Spektrum des Hann-Fensters kann über die Faltungsoperation berechnet werden. Es ergibt sich zu

\[W_{\text{HAN}}(\Omega) = \frac{1}{4} \left(\frac{\sin \left(\frac{N \cdot \Omega}{2}
ight)}{\sin \left(\frac{\Omega}{2}\right)} + 1 \right) \frac{\sin \left(\frac{N \cdot \Omega}{2} - \frac{\Omega}{2}\right)}{\sin \left(\frac{\Omega}{2}\right)} + \frac{1}{4} \left(\frac{\sin \left(\frac{\Omega - 2 \cdot \pi}{N}\right)}{\sin \left(\frac{\Omega}{2}\right)} + 1 \right) \frac{\sin \left(\frac{\Omega - 2 \cdot \pi}{N} - \frac{\Omega}{2}\right)}{\sin \left(\frac{\Omega}{2}\right)} \] \hspace{1cm} (11.70)

Das Hann-Fenster und sein Spektrum sind in Bild 11.23 dargestellt.

Das Hauptmaximum des Hann-Fensters hat eine Breite von \(\Omega_s = 4 \cdot \pi / N \) und ist damit doppelt so breit wie bei dem Rechteckfenster. Die relative Amplitude des Nebenmaximums ist mit \(a_{\text{REL}} = -32 \text{ dB} \) deutlich größer als bei dem Rechteckfenster.

Hamming-Fenster

Hamming- und Hann-Fenster unterscheiden sich nur geringfügig in der Definition.

\[w_{\text{HAM}}[k] = \left(0.54 + 0.46 \cdot \cos \left(\frac{2 \cdot \pi \cdot k}{N} \right)\right) \left(\sigma \left(k + \frac{N-1}{2}\right) - \sigma \left(k - \frac{N+1}{2}\right)\right) \] \hspace{1cm} (11.71)

Auch die Berechnung des Spektrums der beiden Fensterfunktionen ist ähnlich. Für das Hamming-Fenster ergibt sich das Spektrum
Das Hamming-Fenster und sein Spektrum sind in Bild 11.24 dargestellt.

Bild 11.24: Hamming-Fenster und Spektrum des Hamming-Fensters für N = 20

Das Hauptmaximum des Hamming-Fensters hat eine Breite von \(\Omega_S = 4 \cdot \frac{\pi}{N} \). Die relative Amplitude des Nebenmaximums beträgt mit \(a_{\text{REL}} = -42 \text{ dB} \) und ist nochmals deutlich größer als bei dem Hann-Fenster.

Vergleich der Fensterfunktionen

Tabelle 11.5 stellt die berechneten Kennwerte der unterschiedlichen Fenster zusammen.

<table>
<thead>
<tr>
<th>Fensterfunktion</th>
<th>Breite des Hauptmaximums (\Omega_S)</th>
<th>Relative Amplitude der Nebenmaxima (a_{\text{REL}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rechteck</td>
<td>(2 \cdot \frac{\pi}{N})</td>
<td>-13 dB</td>
</tr>
<tr>
<td>Dreieck</td>
<td>(4 \cdot \frac{\pi}{N})</td>
<td>-25 dB</td>
</tr>
<tr>
<td>Hann</td>
<td>(4 \cdot \frac{\pi}{N})</td>
<td>-32 dB</td>
</tr>
<tr>
<td>Hamming</td>
<td>(4 \cdot \frac{\pi}{N})</td>
<td>-42 dB</td>
</tr>
</tbody>
</table>

Beispiel: Vergleich verschiedener Fensterfunktionen bei der Diskreten-Fourier-Transformation

Als Beispiel wird eine harmonische Funktion mit der normierten Kreisfrequenz \(\Omega_0 = 2 \cdot \pi/7 \) abgetastet. Es werden \(N = 32 \) Abtastwerte aufgenommen, wobei die Signale mit Rechteck-, Hann- und Hamming-Fenster multipliziert werden. Bild 11.25 zeigt die aufgenommenen Werte.

Kein Fenster führt zur Berechnung des Spektrums, das sich aus der analytischen Rechnung ergibt. Da an der entsprechenden Frequenz \(\Omega_0 \) keine Stützstelle liegt, ist dies auch nicht möglich. Das Spektrum ist bei allen Fenstern ähnlich auf die beiden Stützstellen verteilt, die in direkter Nachbarschaft zum Impuls an der Frequenz \(\Omega_0 \) liegen.

Bei dem Rechteck-Fenster fällt der Betrag des Spektrums nur langsam ab. Stützstellen, die sehr weit weg von der Frequenz \(\Omega_0 \) liegen, weisen noch einen erheblichen Amplitudenwert auf. Bei Hann- und Hamming-Fenster fallen die Beträge des Spektrums deutlich schneller ab. Das Beispiel bestätigt damit die theoretische Betrachtung in diesem Abschnitt.

Zum Vergleich zeigt Bild 11.27 die über die Diskrete-Fourier-Transformation berechneten Spektren bei einer Frequenz \(\Omega_0 = 2 \cdot \pi/8 \).
In diesem Fall wird das ideale Spektrum mit dem Rechteckfenster richtig identifiziert. Die beiden übrigen Fenster verbreitern das Spektrum aufgrund der größeren Breite des Hauptmaximums. Der Einsatz der Fensterfunktionen verbessert das Ergebnis offensichtlich nicht in allen Fällen.

Zusammenfassend können damit zur Reduktion des Leakage-Effektes folgende Maßnahmen ergriffen werden:

- Anpassung der Abtast- und Beobachtungszeit an die Aufgabenstellung
 Im Idealfall ist die Beobachtungszeit so gewählt, dass ein von sich aus periodisch fortgesetztes Signal entsteht. Die Maßnahme ist sehr wirkungsvoll, lässt sich aber in den wenigsten Anwendungen umsetzen, da die zu analysierenden Signale unbekannt sind.

- Vergrößerung des Beobachtungszeitraums
 Eine Vergrößerung des Beobachtungsintervalls führt zu einer Verringerung der Breite des Hauptschwingers, wodurch die spektrale Auflösung der Diskreten-Fourier-Transformation $\Delta \Omega$ verbessert wird.

- Anwendung von Fensterfunktionen
 Durch Fensterfunktionen werden die bei dem Rechteckfenster vergleichsweise schwach gedämpften Nebenschwinger stärker gedämpft. Dieser Vorteil wird jedoch durch eine Verdoppelung der Breite des Hauptschwingers erkauft.
11.4 Auflösung der Diskreten-Fourier-Transformation – Zero-Padding

11.4.1 Zero-Padding im Zeitbereich

\[
\Delta \omega_N = \frac{2 \cdot \pi}{T_A \cdot N} = \frac{2 \cdot \pi}{T_B} \tag{11.73}
\]

Liegen keine zusätzlichen Abtastwerte vor, können die vorhandenen Messwerte mit M Nullen ergänzt werden. Es entsteht eine Signalfolge der Länge $N + M$. Aufgrund der größeren Anzahl von Folgenwerten verbessert sich die numerische Auflösung zu

\[
\Delta \omega_{N,M} = \frac{2 \cdot \pi}{T_A \cdot (N + M)} < \frac{2 \cdot \pi}{T_A \cdot N} = \Delta \omega_N \tag{11.74}
\]

Dieser Vorgang wird als Zero-Padding bezeichnet. Um die Auswirkung des Zero-Padding auf die Diskrete-Fourier-Transformierte bewerten zu können, werden die Fourier-Transformierten unterschiedlicher Signalfolgen betrachtet. Es werden drei Fälle diskutiert.

- **Fall 1: Standard DFT mit $N_1 = 16$ Abtastwerten**
 Im ersten Fall wird die Signalfolge mit einem Fenster der Länge $N_1 = 16$ beobachtet und die Diskrete-Fourier-Transformierte berechnet.

- **Fall 2: Zero-Padding**
 Im zweiten Fall wird die Länge der Signalfolge auf $N_1 + M = 32$ verdoppelt, indem die gefensterte Signalfolge mit $M = 16$ Nullen aufgefüllt wird.

- **Fall 3: DFT mit $N_2 = 32$ Abtastwerten**
 Im dritten Fall wird die Beobachtungszeit auf $N_2 = 32$ Abtastwerte erhöht.

Im Gegensatz dazu zeigt der Vergleich der Fälle 1 und 3, dass durch eine Vergrößerung des Beobachtungsintervalls die Breite des Dirichlet-Kerns verringert wird, was zu einer Reduzierung des Leakage-Effektes führt. Der Abstand der Stützstellen $\Delta \Omega$ entspricht in Fall 3 dem Fall 2.
11. Diskrete-Fourier-Transformation

11.4.2 Rekonstruktion der Fourier-Transformierten für Signalfolgen aus der DFT

Zur Berechnung der Diskreten-Fourier-Transformation wird eine Signalfolge $x_W[k]$ verwendet, die ein abgetastetes Signal in einem Beobachtungsfenster darstellt. Durch die Berechnung der Diskreten-Fourier-Transformierten wird die Signalfolge periodisch fortgesetzt. Das Spektrum der periodisch fortgesetzten Signalfolge $x_W[k]$ ist die Diskrete-Fourier-Transformierte X_n. Sie ist nur an den Punkten Ω_n definiert und kann über Impulsfunktionen dargestellt werden als

$$X_p(\Omega) = \sum_{n=0}^{N-1} X_n \cdot \delta \left(\Omega - \frac{2\cdot\pi\cdot n}{N} \right)$$ (11.75)

Um das Spektrum der gefensterten Signalfolge $x_W[k]$ zu berechnen, muss von der Beschreibung im Zeitbereich auf den Frequenzbereich geschlossen werden. Im Zeitbereich gilt der Zusammenhang

$$x_W[k] = x_p[k] \cdot w[k] = x_p[k] \cdot (\sigma[k] - \sigma[k-N])$$ (11.76)

Der Multiplikation im Zeitbereich entspricht die Faltung im Frequenzbereich. Das Spektrum der Fensterfunktion $W(\Omega)$ lautet
\[W(\Omega) = e^{-j\Omega \frac{N-1}{2}} \cdot \frac{\sin(\Omega \cdot N)}{\sin(\frac{\Omega}{2})} \]
(11.77)

Da das Spektrum der periodisch fortgesetzten Folge ausschließlich aus gewichteten Impulsen besteht, wird durch die Faltung das Spektrum an die Stellen verschoben, an denen die Impulse liegen. Es ergibt sich

\[X_W(\Omega) = X_p(\Omega) \ast W(\Omega) = \sum_{n=0}^{N-1} X_n \cdot e^{-j\left(\Omega - \frac{2 \pi n}{N}\right) \frac{N-1}{2}}, \]
(11.78)

Das Spektrum des gefensterten Signals \(x_W[k] \) besitzt das kontinuierliche Spektrum \(X_W(\Omega) \).

11.4.3* Zero-Padding im Frequenzbereich

<<< wird später ergänzt >>>
11.5 Fast-Fourier-Transformation

11.5.1 Matrizendarstellung der Diskreten-Fourier-Transformation

Ausgangspunkt für die Fast-Fourier-Transformation ist die Matrizendarstellung der Diskreten-Fourier-Transformation. Dabei wird die Definitionsgleichung

\[X_n = \sum_{k=0}^{N-1} x[k] \cdot e^{-j\frac{2\pi n k}{N}} \]

(11.79)

\[
X = \begin{bmatrix} X_0 \\ X_1 \\ \vdots \\ X_{N-1} \end{bmatrix}
\]

(11.80)

Auch die Abtastwerte $x[k]$ können als Spaltenvektor x mit N Elementen dargestellt werden.

\[
x = \begin{bmatrix} x[0] \\ x[1] \\ \vdots \\ x[N-1] \end{bmatrix}
\]

(11.81)

Die Summe aus Gleichung (11.79) kann über das Produkt einer Matrix W mit dem Vektor x aufgefasst werden. Es ergibt sich

\[
X = \begin{bmatrix} X_0 \\ X_1 \\ \vdots \\ X_{N-1} \end{bmatrix} = \begin{bmatrix} e^{-j\frac{2\pi 0}{N}} & e^{-j\frac{2\pi 1}{N}} & \cdots & e^{-j\frac{2\pi (N-1)}{N}} \\ e^{-j\frac{2\pi 1}{N}} & e^{-j\frac{2\pi 2}{N}} & \cdots & e^{-j\frac{2\pi (N-1)}{N}} \\ \vdots & \vdots & \ddots & \vdots \\ e^{-j\frac{2\pi (N-1)}{N}} & e^{-j\frac{2\pi (N-2)}{N}} & \cdots & e^{-j\frac{2\pi 0}{N}} \end{bmatrix} \cdot \begin{bmatrix} x[0] \\ x[1] \\ \vdots \\ x[N-1] \end{bmatrix}
\]

(11.82)

In der Matrix treten Exponentialfunktionen auf, die immer wieder denselben Faktor haben, der die Drehung in der komplexen Ebene beschreibt. Er wird als komplexer Drehfaktor bezeichnet und zur Erleichterung der Schreibweise abgekürzt zu

\[e^{-j\frac{2\pi n k}{N}} = e^{-j\alpha} \]
\[W_N = e^{-j \frac{2\pi i}{N}} \]

(11.83)

Damit kann die Matrizendarstellung überführt werden zu

\[
\begin{align*}
X &= \begin{pmatrix}
X_0 \\
X_1 \\
\vdots \\
X_{N-1}
\end{pmatrix} = \begin{pmatrix}
W_N^0 & W_N^0 & \ldots & W_N^0 \\
W_N^1 & W_N^1 & \ldots & W_N^1 \\
\vdots & \vdots & \ddots & \vdots \\
W_N^{N-1} & W_N^{N-1} & \ldots & W_N^{N-1}
\end{pmatrix} \begin{pmatrix}
x[0] \\
x[1] \\
\vdots \\
x[N-1]
\end{pmatrix} = F \cdot x
\end{align*}
\]

(11.84)

Die Matrix \(F \) wird als Fourier-Matrix bezeichnet. Es kann gezeigt werden, dass alle Spalten und Zeilen orthogonal zueinander sind. Diese orthogonalen Matrizen lassen sich immer invertieren und auch die invertierte Orthogonalmatrix ist invertierbar. Daraus ergibt sich für die inverse Diskrete-Fourier-Transformation

\[
\begin{align*}
X &= \begin{pmatrix}
W_N^0 & W_N^0 & \ldots & W_N^0 \\
W_N^1 & W_N^1 & \ldots & W_N^1 \\
\vdots & \vdots & \ddots & \vdots \\
W_N^{N-1} & W_N^{N-1} & \ldots & W_N^{N-1}
\end{pmatrix}^{-1} \begin{pmatrix}
X_0 \\
X_1 \\
\vdots \\
X_{N-1}
\end{pmatrix} \\
&= \frac{1}{N} \begin{pmatrix}
W_N^0 & W_N^0 & \ldots & W_N^0 \\
W_N^1 & W_N^1 & \ldots & W_N^1 \\
\vdots & \vdots & \ddots & \vdots \\
W_N^{N-1} & W_N^{N-1} & \ldots & W_N^{N-1}
\end{pmatrix} \begin{pmatrix}
X_0 \\
X_1 \\
\vdots \\
X_{N-1}
\end{pmatrix} = F^{-1} \cdot x
\end{align*}
\]

(11.85)

11.5.2 Grundidee der Fast-Fourier-Transformation

Die Matrizenschreibweise zeigt, dass die Diskrete-Fourier-Transformation der Länge \(N \) mit \(N \cdot N \) komplexe Multiplikationen und \(N \cdot (N - 1) \) komplexen Additionen berechnet wird. Ein Kernpunkt der Aufwandsreduktion ist, die Periodizität der komplexen Exponentialfunktion beziehungsweise des komplexen Drehfaktors \(W_N \) auszunutzen. Unter Berücksichtigung der Periodizität

\[W_N^0 = W_N^{N+N} \]

(11.86)

kann im Fall einer Ordnung \(N = 4 \) die Fourier-Matrix geschrieben werden als

\[
\begin{pmatrix}
W_N^0 & W_N^0 & W_N^0 & W_N^0 \\
W_N^1 & W_N^1 & W_N^1 & W_N^1 \\
W_N^2 & W_N^2 & W_N^2 & W_N^2 \\
W_N^3 & W_N^3 & W_N^3 & W_N^3
\end{pmatrix} = \begin{pmatrix}
W_N^0 & W_N^0 & W_N^0 & W_N^0 \\
W_N^1 & W_N^1 & W_N^1 & W_N^1 \\
W_N^2 & W_N^2 & W_N^2 & W_N^2 \\
W_N^3 & W_N^3 & W_N^3 & W_N^3
\end{pmatrix}
\]

(11.87)

Ziel ist es, die in rot eingezeichneten gemeinsamen Vektoren für eine Zusammenfassung zu nutzen. Das kann dadurch geschehen, dass die entsprechenden Variablen vorab addiert und erst dann mit dem komplexen Drehfaktor multipliziert werden. Der resultierende Signalfluss ist in Bild 11.29 dargestellt.
In der ersten Stufe werden die gewichteten Summen von Spalte 1 und 3 beziehungsweise 2 und 4 gebildet. In der zweiten Stufe wird die Multiplikation mit dem komplexen Drehfaktor vorgenommen. Es werden insgesamt 8 Multiplikationen und 8 Additionen benötigt. Mit diesem Vorgehen lässt sich sowohl die Anzahl der komplexen Additionen, als auch Multiplikationen von \(N^2 \) auf \(N \cdot \log_2(N) \) reduzieren. Diese Symmetrie ist allerdings nur vorhanden, wenn die Anzahl von Messwerten eine Potenz von 2 ist.

\[
N = 2^n \tag{11.88}
\]

Kann diese Bedingung nicht erreicht werden, werden zu den vorhandenen Messwerten solange Nullen hinzugefügt, bis die entstehende Signalfolge eine Zweierpotenz aufweist. Eine weitere Aufwandsreduzierung lässt sich im Fall reeller Zahlenfolgen erreichen. Hierzu werden die in Abschnitt 11.2.3 dargestellten Symmetrieigenschaften der Diskreten-Fourier-Transformation genutzt, um statt einer komplexen Signalfolge parallel zwei reelle Zahlenfolgen zu berechnen.

11.5.3 Radix-2-FFT-Algorithmus

<<< wird später ergänzt >>>
11.6 Literatur

11.6.1 Literaturstellen mit besonders anschaulicher Darstellung

11.6.2 Literaturstellen mit praktischen Anwendungen

11.6.3 Literatur zu MATLAB

[Schw07] Schweizer, Wolfgang: MATLAB kompakt, Oldenbourg Verlag München, 2007

11.6.4 Weiterführende Literatur

11.6.5 Literatur zum Projekt

[]
11.7 Übungsaufgaben - Diskrete-Fourier-Transformation

11.7.1 Systemidentifikation mit der Fast-Fourier-Transformation
Zur Charakterisierung eines Filters werden ein Eingangssignal \(x[k] \) und ein Ausgangssignal \(y[k] \) mit einer Abtastzeit \(T_A = 0.01 \) gemessen. Mit den Messwerten wird eine Fast-Fourier-Transformation berechnet. Es ergeben sich folgende Werte:

<table>
<thead>
<tr>
<th>(m)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>(U_m)</td>
<td>7.62</td>
<td>1.28-0.12j</td>
<td>-1.49-1.17j</td>
<td>-0.53+1.53j</td>
<td>-0.90</td>
<td>-0.53-1.53j</td>
<td>-1.49+1.17j</td>
<td>1.28+0.12j</td>
</tr>
<tr>
<td>(Y_m)</td>
<td>671</td>
<td>-7.1-27.8j</td>
<td>0.54+23.4j</td>
<td>10.7-11.07j</td>
<td>7.91</td>
<td>10.7+11.07j</td>
<td>0.54-23.4j</td>
<td>-7.1+27.8j</td>
</tr>
</tbody>
</table>

a) Berechnen Sie die Frequenzen \(\omega_m \), für die die FFT berechnet werden.
b) Berechnen Sie numerisch den Frequenzgang des Systems.
c) Berechnen Sie numerisch den Amplituden- und Phasengang des Systems.
d) Für welchen Frequenzbereich können Sie eine Aussage über den Amplitudengang machen? Wie groß ist die Auflösung, die Sie auf Basis der gemessenen Werte machen können? Begründen Sie Ihre Antwort.

11.7.2 Diskrete Fourier-Transformierte abgetasteter Signale
Gegeben ist das in folgender Abbildung dargestellte, normierte und zeitkontinuierliche Signal \(x(t) \).
\[
(50t) x(t) = 2500 \cdot e^{-50t} \cdot \sigma(t)
\]

a) Berechnen Sie die Laplace-Transformierte \(X(s) \) des Signals
b) Berechnen Sie das Spektrum \(X(\omega) \).

c) Beschriften Sie die Achsen in dem Diagramm für \(|X(\omega)| \) in dem Sie die Werte \(|X(\omega = 0)| \) und \(|X(\omega \to \infty)| \) berechnen. Gegen Sie die Werte für die eingezeichneten Achsenabschnitte an.

Das Signal wird mit einer normierten Abtastzeit \(T_A = 0.01 \) abgetastet. Aus den 16 eingezeichneten Abtastwerten wird eine Diskrete-Fourier-Transformierte berechnet.

e) Welche maximale Frequenz \(\omega_{max} \) weist das Spektrum der DFT auf, wie groß ist die spektrale Auflösung \(\Delta \omega \)?
f) Die Abtastzeit wird auf \(T_A = 0.005 \) geändert und die Diskrete-Fourier-Transformierte wird mit 32 Abtastwerten berechnet. Welchen Einfluss hat die Änderung auf das Ergebnis der DFT? Begründen Sie Ihre Antwort und skizzieren Sie das Spektrum.

g) Angenommen, es sind nur die 32 Abtastwerte von dem Signal vorhanden, die spektrale Auflösung ist jedoch nicht ausreichend. Können Sie Maßnahmen ergreifen, um die spektrale Auflösung numerisch um einen Faktor 2 zu verbessern.
11.7.3 Diskrete Fourier-Transformierte harmonischer Signale

Gegeben ist das Signal \(x(t) \), das für den Zeitraum von \(2 \cdot T \) beobachtet wird.

\[
x(t) = \cos(\omega_0 \cdot t) \cdot (\sigma(t) - \sigma(t - 2 \cdot T))
\]

Seine Fourier-Transformierte \(X(\omega) \) lautet

\[
X(\omega) = 2 \cdot T \cdot \left(\frac{\sin(T \cdot (\omega + \omega_0))}{T \cdot (\omega + \omega_0)} \cdot e^{-jT \cdot (\omega + \omega_0)} + \frac{\sin(T \cdot (\omega - \omega_0))}{T \cdot (\omega - \omega_0)} \cdot e^{jT \cdot (\omega - \omega_0)} \right)
\]

Ausschnitte von Signal und Spektrum sind in den beiden folgenden Abbildungen für \(\omega_0 = \pi/4 \) und \(T = 16 \) dargestellt.
Das Signal \(x(t) \) wird unter unterschiedlichen Randbedingungen mit einer Abtastzeit von \(T_A = 1 \) abgetastet. Es ergeben sich die Signalfolgen \(x_1[k] \), \(x_2[k] \) und \(x_3[k] \), deren Spektren \(X_i(\omega_k) \) mit der Diskreten-Fourier-Transformierten berechnet werden.

a) Bei dem Signal \(x_1[k] \) liegen 16 Abtastwerte \(x_1[0] \ldots x_1[15] \) vor. Skizzieren Sie den Betrag der DFT und die der DFT entsprechende Signalfolge in die vorgegebenen Diagramme und beschriften Sie die Achsen.

b) Bei dem Signal \(x_2[k] \) liegen 8 Abtastwerte \(x_2[0] \ldots x_2[7] \) mit derselben Abtastzeit \(T_A = 1 \) vor. Skizzieren Sie den Betrag der DFT und die der DFT entsprechende Signalfolge in die vorgegebenen Diagramme und beschriften Sie die Achsen.

c) Vergleichen Sie die Spektren \(X_1 \) und \(X_2 \) miteinander und erklären Sie gegebenenfalls Unterschiede. Welche Möglichkeit sehen Sie allgemein, die spektrale Auflösung einer Diskreten-Fourier-Transformierten zu verbessern.

11.7.4 Berechnung des Spektrums eines Gauß-Tiefpasses

Gegeben ist ein Signal $x(t)$ der Form

$$x(t) = e^{-0.2 \cdot t^2}$$

a) Bestimmen Sie die Fourier-Transformierte $X(\omega)$ des Signals $x(t)$ und beschriften Sie die y-Achse des folgenden Diagramms auf Basis des Ergebnisses.

b) Das Signal wird in Zeitabständen mit $T_A = \pi/5$ ideal abgetastet. Geben Sie einen mathematischen Ausdruck für das Spektrum $X_A(\omega)$ des abgetasteten Signals $x_A(t)$ an.

c) Von dem Signal liegen 16 Abtastwerte für den Zeitraum von $0 \ldots 15 \cdot \pi/5$ vor. Mit diesen Abtastwerten wird eine Diskrete-Fourier-Transformation durchgeführt. Skizzieren Sie die Diskrete-Fourier-Transformierte.
11.8 Musterlösungen - Diskrete-Fourier-Transformation

11.8.1 Systemidentifikation mit der Fast-Fourier-Transformation

a) Die Frequenzen, an denen die Werte berechnet werden, errechnen sich aus
\[\omega_m = m \cdot \frac{\omega_A}{N} = m \cdot \frac{2 \cdot \pi}{T_A \cdot N} \]

b) Die mit den Messwerten durchgeführten FFT stellen die DFT des Eingangssignals \(U_m \) beziehungsweise Ausgangssignals \(Y_m \) dar. Die Übertragungsfunktion ergibt sich aus dem Quotienten
\[G_m = \frac{Y_m}{U_m} \]

Damit kann aus den Angaben der Frequenzgang numerisch ermittelt werden, die Ergebnisse sind in der Tabelle unten dargestellt.

c) Der Amplitudengang \(A_m \) errechnet sich aus dem Frequenzgang durch Bilden des Betrages.
\[A_m = \left| \frac{Y_m}{U_m} \right| \]

Der Phasengang \(\varphi_m \) wird berechnet über
\[\varphi_m = \arctan \left(\frac{\text{Im}(Y_m)}{\text{Re}(Y_m)} \right) - \arctan \left(\frac{\text{Im}(U_m)}{\text{Re}(U_m)} \right) \]

Damit ergänzt sich die Tabelle zu

<table>
<thead>
<tr>
<th>(m)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\omega_m)</td>
<td>0</td>
<td>78.5</td>
<td>157.1</td>
<td>235.6</td>
<td>314.2</td>
<td>392.7</td>
<td>471.2</td>
<td>549.8</td>
</tr>
<tr>
<td>(U_m)</td>
<td>7.62</td>
<td>1.28-0.12j</td>
<td>-1.49-1.17j</td>
<td>-0.53+1.53j</td>
<td>-0.90</td>
<td>-0.53-1.53j</td>
<td>-1.49+1.17j</td>
<td>1.28+0.12j</td>
</tr>
<tr>
<td>(Y_m)</td>
<td>671</td>
<td>-7.1-27.8j</td>
<td>0.54+23.4j</td>
<td>10.7-11.07j</td>
<td>7.91</td>
<td>10.7+11.07j</td>
<td>0.54-23.4j</td>
<td>-7.1+27.8j</td>
</tr>
<tr>
<td>(A_m)</td>
<td>88.06</td>
<td>22.3</td>
<td>12.35</td>
<td>9.49</td>
<td>8.78</td>
<td>9.49</td>
<td>12.35</td>
<td>22.3</td>
</tr>
<tr>
<td>(A_m \cdot T_A)</td>
<td>0.88</td>
<td>0.22</td>
<td>0.12</td>
<td>0.0949</td>
<td>0.0878</td>
<td>0.0949</td>
<td>0.1235</td>
<td>0.223</td>
</tr>
</tbody>
</table>

d) Der Amplituden- und Phasengang kann auf Basis dieser Werte nur bis \(\omega_A/2 \) beschrieben werden. Außerhalb des Bereiches kann keine Aussage getroffen werden. Die Auflösung ergibt sich damit zu
\[\Delta \omega = \frac{\omega_A}{N} \]

In diesem Bereich lässt sich mit den Werten aus der Tabelle der Amplitudengang des untersuchten Filters skizzieren. Dabei muss berücksichtigt werden, dass der Amplitudengang für einen Vergleich mit dem kontinuierlichen System mit dem Faktor \(T_A \) multipliziert werden muss.
11.8.2 Diskrete Fourier-Transformierte abgetasteter Signale

a) Die Laplace-Transformierte des Signals kann mithilfe der Korrespondenztafel ermittelt werden. Aus der Korrespondenz 8 ergibt sich die zu der Zeitfunktion

\[x(t) = 2500 \cdot t \cdot e^{50t} \cdot \sigma(t) \]

gehörende Laplace-Transformierte

\[X(s) = \frac{2500}{(s + 50)^2} \]

b) Das System hat einen zweifachen reellen Pol bei \(\alpha_{1,2} = -50 \), ist also stabil. Damit kann die Fourier-Transformierte des Signals aus der Laplace-Transformierten durch die Substitution \(s = j \cdot \omega \) berechnet werden.

\[X(\omega) = \frac{2500}{(j \cdot \omega + 50)^2} \]

c) Das Spektrum hat an der Stelle \(\omega = 0 \) den Betrag

\[|X(\omega = 0)| = \frac{2500}{(j \cdot 0 + 50)^2} = 1 \]

und für \(\omega \to \infty \)

\[|X(\omega \to \infty)| = \frac{2500}{(j \cdot \infty + 50)^2} = 0 \]

Damit ergeben sich für die Ordinate die eingezeichneten Werte.

d) Die Abtastfrequenz \(\omega_A \) ergibt sich aus

\[\omega_A = \frac{2 \cdot \pi}{T_A} = 628 \text{ rad/s} \]

wegen der Abtastung wird der Amplitudengang periodisch in \(\omega_A \) wiederholt. Es liegen 16 Abtastwerte vor, die den Amplitudengang zwischen 0 und \(\omega_A \) in 16 Intervalle teilt. Es liegen also Werte an den Stellen

\[\omega_m = \frac{2 \cdot \pi \cdot m}{T_A \cdot N} \]

mit \(m = 0 \ldots 15 \) und \(N = 16 \) vor.

Die Ordinate wird gegenüber dem Spektrum des zeitkontinuierlichen Signals mit einem Faktor \(1/T_A = 100 \) multipliziert.

e) Die maximale Frequenz ist die halbe Abtastfrequenz, also

\[\omega_{\text{max}} = \frac{\pi}{T_A} = 314 \text{ rad/s} \]

Die spektrale Frequenzauflösung ergibt sich aus Aufgabenteil d zu

\[\Delta \omega = \frac{2 \cdot \pi}{T_A \cdot N} = 39.25 \text{ rad/s} \]
f) Durch die Halbierung der Abtastzeit und gleichzeitige Verdoppelung der Anzahl der Abtastwerte ergibt sich dieselbe spektrale Auflösung

\[\Delta \omega = \frac{2 \cdot \pi}{T_A \cdot N} = \frac{39.25 \text{ rad/s}}{} \]

Da die Abtastfrequenz sich verdoppelt

\[\omega_A = \frac{2 \cdot \pi}{T_A} = \frac{1256 \text{ rad}}{} \]

verdoppelt sich auch die maximale Frequenz

\[\omega_{\text{max}} = \frac{\pi}{T_A} = \frac{628 \text{ rad}}{} \]

Die Ordinate wird gegenüber dem Spektrum des zeitkontinuierlichen Signals mit einem Faktor \(1/T_A = 200\) multipliziert.

g) Die spektrale Auflösung kann durch das Einfügen weiterer Nullwerte nicht verbessert werden. Zero-Padding erhöht lediglich die numerische Auflösung. Für eine Verbesserung der Auflösung um einen Faktor 2 müssen doppelt so viele Abtastwerte zur Verfügung stehen.
11.8.3 Diskrete Fourier-Transformierte harmonischer Signale

a) Bei der Diskreten-Fourier-Transformierten wird das Spektrum des abgetasteten Signals an den Stelle ω_k berechnet.

$$\omega_k = \frac{\omega_o}{N_i} \cdot k = \frac{\pi}{8} \cdot k$$

Durch die Diskretisierung im Frequenzbereich wird das Zeitsignal periodisch fortgesetzt. Bei den gegebenen Abtastwerten ergibt sich eine periodisch fortgesetzte Kosinus-Funktion mit der Frequenz

$$\omega_o = \frac{\pi}{4} \cdot k$$

Der Wert der Diskreten-Fourier-Transformation berechnet sich aus dem Wert der Fourier-Transformierten des zeitkontinuierlichen Signals an den Stellen ω_k. Damit ergibt sich folgendes Bild:

b) Wenn nur 8 Abtastwerte verwendet werden, wird die Beobachtungszeit halbiert. Dadurch sinkt die spektrale Auflösung. Das Spektrum wird nur an den Stellen ω_k berechnet.

$$\omega_k = \frac{\omega_o}{N_j} \cdot k = \frac{\pi}{4} \cdot k$$

Durch die Diskretisierung im Frequenzbereich wird das Zeitsignal periodisch fortgesetzt. Auch bei diesen Abtastwerten ergibt sich eine periodisch fortgesetzte Kosinus-Funktion mit der Frequenz

$$\omega_o = \frac{\pi}{4} \cdot k$$

Der Wert der Diskreten-Fourier-Transformation berechnet sich aus dem Wert der Fourier-Transformierten des zeitkontinuierlichen Signals an den Stellen ω_k. Wegen der halbierten Beobachtungszeit ist der Betrag des Spektrums einen Faktor 2 kleiner. Die Höhe des Wertes an der Stelle $\Omega = 0$ ergibt sich auch aus folgender Grenzwertbetrachtung für den Dirichlet-Kern:

$$\lim_{\Omega \to 0} \sin\left(\frac{N \cdot \Omega}{2}\right) = \lim_{\Omega \to 0} \frac{N \cdot \Omega}{\Omega} = N$$

Es ergibt sich folgendes Bild:
c) Beide Signale wurden so abgetastet, dass das Zeitsignal bei einer periodischen Fortsetzung ein harmonisches Signal bleibt. Dadurch kann bei beiden Diskreten-Fourier-Transformierten die richtige Frequenz entnommen werden. Im zweiten Fall ist die Auflösung wegen der geringeren Anzahl von Abtastwerten schlechter, was sich allerdings nicht auswirkt.

Allgemein kann eine bessere Auflösung nur durch eine längere Beobachtungszeit erreicht werden. Zero-Padding führt zu einem engeren Abstand der Stützstellen. Allerdings führt die Fensterung des Signals zu einer überlagerten \(\sin(x)/x \)-Funktion, die die spektrale Auflösung begrenzt.

d) Lösung a ist die richtige Lösung. Zero-Padding kann als Fensterung der Abtastwerte verstanden werden. Durch die Multiplikation des Signals mit einem Fenster im Zeitbereich, wird das Spektrum mit einer \(\sin(x)/x \)-Funktion multipliziert und das Spektrum verschmiert.

Auch im Zeitbereich wird deutlich, dass die periodische Fortsetzung des Signals nicht zu einer harmonischen Funktion führt, sodass das Spektrum über mehrere Stellen verteilt sein muss.

11.8.4 Berechnung des Spektrums eines Gauß-Tiefpasses

a) Nach der Korrespondenztafel ergibt sich mit \(\alpha = 0.2 \) die Fourier-Transformierte \(X(\omega) \) zu

\[
X(\omega) = \sqrt{\frac{\pi}{\alpha}} \cdot e^{\frac{-\omega^2}{4\alpha}} = \sqrt{\frac{\pi}{0.2}} \cdot e^{\frac{-\omega^2}{0.08}}
\]

Damit ist das Maximum die Konstante

\[
X(0) = \sqrt{\frac{\pi}{0.2}} = 3.96 \approx 4
\]
b) Durch das Abtasten der Zeitfunktion wiederholt sich der Frequenzgang des stetigen Signals multipliziert mit $1/T_A$ periodisch in ω_A. Es ergibt sich

$$X_A(\omega) = \frac{1}{T_A} \sum_{n=-\infty}^{\infty} X(\omega - n \cdot \omega_A) = \frac{1}{T_A} \sum_{n=-\infty}^{\infty} \sqrt{0.2} \cdot e^{\frac{j(\omega - n \cdot \omega_A)^2}{\omega_A}}$$

Dabei ist $T_A = \pi/5 = 0.6283$ und damit $\omega_A = 10$. Da die Fourier-Transformierten bei $\omega = \omega_A/2 = 5$ bereits stark abgeklungen sind, kann zum Zeichnen das Spektrum aus dem Bereich $-5 \leq \omega < 5$ periodisch wiederholt werden. Es ergibt sich folgendes Bild:

c) Berechnung der diskreten Fourier-Transformation kann umgangen werden, weil die Fourier-Transformation des stetigen Signals $x(t)$ bekannt ist. Es liegen $N = 16$ Abtastwerte vor. Die Stellen teilen das Intervall von $-\omega_A/2$ bis $+\omega_A/2$ in 16 gleich große Intervalle auf. Die Auflösung $\Delta \omega$ errechnet sich damit zu

$$\Delta \omega = \frac{2 \cdot \pi}{T_A \cdot N} = \frac{2 \cdot \pi}{\frac{\pi}{5} \cdot 8} = \frac{5}{8}$$

und die Frequenzen, an denen die diskrete Fourier-Transformierte berechnet wird, sind

$$\omega_m = m \cdot \frac{5}{8}$$

wobei m die Wert $0 \leq m < 15$ annimmt. Aufgrund der Periodizität in ω_A ergibt sich folgendes Bild:
Diskrete-Fourier-Transformation

Zeit t

Signal

$\text{Kreisfrequenz } \omega$

$|\text{Spektrum } X_A(\omega)| / \pi$

$x(t)$, $x_A(t)$

Betrag des Spektrums $X_A(\omega)$, abgetastet